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ABSTRACT
Wepresent algorithms for theMax-k-Cover andMax-k-UniqueCover
problems in the data stream model. The input to both problems are

m subsets of a universe of size n and a value k ∈ [m]. In Max-k-
Cover, the problem is to find a collection of at most k sets such that

the number of elements covered by at least one set is maximized. In

Max-k-UniqueCover, the problem is to find a collection of at most

k sets such that the number of elements covered by exactly one

set is maximized. These problems are closely related to a range of

graph problems including matching, partial vertex cover, and ca-

pacitated maximum cut. In the stream model, we assume k is given

and the sets are revealed online. Our goal is to design single-pass

algorithms that use space that is sublinear in the input size. Our

main algorithmic results are as follows.

• If sets have size at most d , there exist single-pass algorithms

using O(dd+1kd ) space that solve both problems exactly.

This is optimal up to logarithmic factors for constant d .
• If each element appears in at most r sets, we present single
pass algorithms using Õ(k2r/ϵ3) space that return a 1 + ϵ
approximation in the case of Max-k-Cover and 2 + ϵ ap-

proximation in the case of Max-k-UniqueCover. We also

present a single-pass algorithm using slightly more mem-

ory, i.e., Õ(k3r/ϵ4) space, that 1 + ϵ approximates Max-k-
UniqueCover.

In contrast to the above results, when d and r are arbitrary, any con-
stant pass 1+ϵ approximation algorithm for either problem requires

Ω(ϵ−2m) space but a single pass O(mk/ϵ2) space algorithm exists.

In fact any constant-pass algorithm with an approximation better

than e1−1/k requires Ω(m/k2) space when d and r are unrestricted.
En route, we also obtain an algorithm for the parameterized version

of the streaming SetCover problem.
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1 INTRODUCTION
Problem Description. We consider the Max-k-Cover and Max-k-
UniqueCover problems in the data stream model. The input to

both problems are m subsets of a universe of size n and a value

k ∈ [m]. In Max-k-Cover, the problem is to find a collection of

at most k sets such that the number of elements covered by at

least one set is maximized. In Max-k-UniqueCover, the problem
is to find a collection of at most k sets such that the number of

elements covered by exactly one set is maximized. In the stream

model, we assume k is provided but that the sets are revealed online

and our goal is to design single-pass algorithms that use space that

is sub-linear in the input size.

Max-k-Cover is a classic NP-Hard problem that has a wide range

of applications including facility and sensor allocation [50], infor-

mation retrieval [5], influence maximization in marketing strategy

design [46], and the blog monitoring problem where we want to

choose a small number of blogs that cover a wide range of topics

[63]. It is well-known that the greedy algorithm, which greedily

picks the set that covers the most number of uncovered elements,

is a e/(e − 1) approximation and that unless P = NP , this approxi-
mation factor is the best possible [30].

Max-k-UniqueCover was first studied in the offline setting by

Demaine et al. [25]. A motivating application for this problem was

in the design of wireless networks where we want to place base

stations that cover mobile clients. Each station could cover mul-

tiple clients but unless a client is covered by a unique station the

client would experience too much interference. Demaine et al. [25]

gave a polynomial time O(logk) approximation. Furthermore, they

showed that Max-k-UniqueCover is hard to approximate within a

factor O(logσ n) for some constant σ under reasonable complexity

assumptions. Erlebach and van Leeuwen [29] and Ito et al. [40]

considered a geometric variant of the problem and Misra et al. [60]

considered the parameterized complexity of the problem. This prob-

lem is also closely related to Minimum Membership Set Cover

where one has to cover every element and minimizes the maximum

overlap on any element [26, 51].

In the streaming setmodel,Max-k-Cover and the related SetCover
problem

1
have both received a significant amount of attention

[7, 15, 27, 36, 38, 39, 59, 63]. The most relevant result is a single-

pass 2+ϵ approximation using Õ(kϵ−2) space [8, 59] although better
approximation is possible in a similar amount of space if multiple

passes are permitted [59] or if the stream is randomly ordered [61].

In this paper, we almost exclusively consider single-pass algorithms

where the sets arrive in an arbitrary order. The unique coverage

problem has not been studied in the data stream model although

it, and Max-k-Cover, are closely related to various graph problems

that have been studied.

1
That is, find the minimum number of sets that cover the entire universe.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Relationship to Graph Streaming. There are two main variants of

the graph stream model. In the arbitrary order model, the stream
consists of the edges of the graph in arbitrary order. In the adjacency
list model, all edges that include the same node are grouped together.

Both models generalize naturally to hypergraphs where each edge

could consists of more than two nodes. The arbitary order model

has been more heavily studied than the adjacency list model but

there has still been a significant amount of work in the latter model

[6, 7, 11, 36, 41, 48, 55–57]. For further details, see a recent survey

on work on the graph stream model [54].

To explore the relationship between Max-k-Cover and Max-k-
UniqueCover and various graph stream problems, it makes sense

to introduce to additional parameters beyond m (the number of

sets) and n (the size of the universe). Specifically, throughout the

paper we let d denote the maximum cardinality of a set in the input

and let r denote the maximum multiplicity of an element in the

universe where the multiplicity is the number of sets the element

appears.
2
Then an input toMax-k-Cover andMax-k-UniqueCover

can define a (hyper)graph in one of the following two natural ways:

(1) First Interpretation: A sequence of (hyper-)edges on a graph

with n nodes of maximum degree r (where the degree of a
node v corresponds to how many hyperedges include that

node) and m hyperedges where each hyperedge has size

at most d . In the case where every set has size d = 2, the

hypergraph is an ordinary graph, i.e., a graph where every

edge just has two endpoints. With this interpretation, the

graph is being presented in the arbitrary order model.

(2) Second Interpretation: A sequence of adjacency lists (where

the adjacency list for a given node includes all the hyper-

edges) on a graph withm nodes of maximum degree d and n
hyperedges of maximum size r . In this interpretation, if every
element appears in exactly r = 2 sets, then this corresponds

to an ordinary graph where each element corresponds to an

edge and each element corresponds to an edge. With this

interpretation, the graph is being presented in the adjacency

list model.

Under the first interpretation, the Max-k-Cover problem and

the Max-k-UniqueCover problem when all sets have exactly size 2

naturally generalize the problem of finding a maximum matching

in an ordinary graph in the sense that if there exists a matching

with at least k edges, the optimum solution to either Max-k-Cover
and Max-k-UniqueCover will be a matching. There is a large body

of work on graph matchings in the data stream model [2, 12, 23,

24, 28, 31, 34, 35, 42, 43, 47–49, 53, 65] including work specifically

on solving the problem exactly if the matching size is bounded

[18, 20]. More precisely, Max-k-Cover corresponds to the partial

vertex cover problem [52]: what is the maximum number of edges

that can be covered by selecting k nodes. For larger sets, theMax-
k-Cover and Max-k-UniqueCover are at least as hard as finding

partial vertex covers and matching in hypergraphs.

Under the second interpretation, when all elements have mul-

tiplicity 2,Max-k-UniqueCover corresponds to finding the capac-

itated maximum cut, i.e., a set of at most k vertices such that the

number of edges with exactly one endpoint in this set is maximized.

2
Note that d and r are dual parameters in the sense that if the input is {S1, . . . , Sm }
and we define Ti = {j : i ∈ Sj } then d = maxj |Sj | and r = maxi |Ti |.

In the offline setting, Ageev and Sviridenko [1] and Gaur et al. [33]

presented a 2 approximation for this problem using linear program-

ming and local search respectively. The (uncapacitated) maximum

cut problem was been studied in the data stream model by Kapralov

et al. [44, 45]; a 2-approximation is trivial in logarithmic space
3
but

improving on this requires space that is polynomial in the size of

the graph. The capacitated problem is a special case of the problem

of maximizing a non-monotone sub-modular function subject to a

cardinality constraint. This general problem has been considered

in the data stream model [8, 13, 16, 37] but in that line of work it

is assumed that there is oracle access to the function being opti-

mized, e.g., given any set of nodes, the oracle will return the number

of edges cut. Alaluf et al. [3] presented a 2 + ϵ approximation in

this setting, assuming exponential post-processing time. In con-

trast, our algorithm does not assume an oracle while obtaining a

1 + ϵ approximation (and also works for the more general problem

Max-k-UniqueCover).

1.1 Our Results
Our main results are the following single-pass stream algorithms

4
:

(A) Bounded Set Cardinality. If all sets have size at mostd , there

exists a Õ(dd+1kd ) space data stream algorithm that solves

Max-k-UniqueCover and Max-k-Cover exactly. We show

that this is nearly optimal in the sense that any exact al-

gorithm requires Ω(kd ) space.
(B) Bounded Multiplicity. If all elements occurs in at most r sets,

we present the following algorithms:

• (B1)Max-k-UniqueCover: There exists a 2+ ϵ approxima-

tion algorithm using Õ(ϵ−3k2r ) space.
• (B2) Max-k-UniqueCover: We show that the approxima-

tion factor can be improved to 1 + ϵ at the expense of

increasing the space use to Õ(ϵ−4k3r ).
• (B3) Max-k-Cover: There exists a 1 + ϵ approximation

algorithm using Õ(ϵ−3k2r ) space.

In contrast to the above results, when d and r are arbitrary, con-
stant pass 1 + ϵ approximation algorithm for either problem re-

quires Ω(ϵ−2m) space [6].
5
We also generalize of lower bound

for Max-k-Cover [59] to Max-k-UniqueCover to show that any

constant-pass algorithm with an approximation better than e1−1/k

requires Ω(m/k2) space. We also present a single-pass algorithm

with an O(logmin(k, r )) approximation for Max-k-UniqueCover
using Õ(k2) space, i.e., the space is independent of r and d but the

approximation factor depends on r . This algorithm is a simple com-

bination of a Max-k-Cover algorithm due to [59] and an algorithm

for Max-k-UniqueCover in the offline setting due to Demaine et

al. [25]. Finally, our Max-k-Cover result (B3) algorithm also yields

a new multi-pass result for SetCover. See Section 4.4 for details.

1.2 Technical Summary and Comparisons
Technical summary. Our results are essentially streamable kernel-

ization results, i.e., the algorithm “prunes" the input (in the case

3
It suffices to count the number of edges M since there is always a cut whose size is

between M/2 and M .

4
Throughout we use Õ to denote that logarithmic factors ofm andn are being omitted.

5
The lower bound result by Assadi [6] was for the case ofMax-k -Cover but we will
explain that it also applies in the case ofMax-k -UniqueCover.
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of Max-k-UniqueCover and Max-k-Cover this corresponds to ig-

noring some of the input sets) to produce a “kernel" in such a way

that a) solving the problem optimally on the kernel yields a solu-

tion that is as good (or almost as good) as the optimal solution on

the original input and b) the kernel is streamable and sufficiently

smaller than the original input such that it is possible to find an

optimal solution for the kernel in significantly less time than it

would take to solve on the original input. In the field of fixed pa-

rameter tractability, the main requirement is that the kernel can

be produced in polynomial time. In the growing body of work on

streaming kernelization [17–19] the main requirement is that the

kernel can then be constructed using small space in the data stream

model. Our results fits in with this line of work and the analysis

requires numerous combinatorial insights into the structure of the

optimum solution forMax-k-UniqueCover andMax-k-Cover.
Our technical contributions can be outlined as follows.

• Results (A) and (B3) rely on various structural and combi-

natorial observations. At a high level, Result (A) uses the

observation that each set of any Max-k-Cover or Max-k-
UniqueCover solution intersects any maximal set of disjoint

sets. The main technical step is to demonstrate that storing

a small number of intersecting sets suffices to preserve the

optimal solution.

• The 1 + ϵ and 2 + ϵ approximations for Max-k-Cover and
Max-k-UniqueCover, i.e., results (B1) and (B3), are based on

a very simple idea of first collecting the largest O(rk/ϵ) sets
and then solving the problem optimally on these sets. This

can be done in a space efficient manner using existing sketch

for F0 estimation in the case of Max-k-Cover and a new

sketch we present the case of Max-k-UniqueCover. While

the approach is simple, showing that it yields the required

approximations requires some work and builds on a recent

result by Manurangsi [52]. We also extend the algorithm

to the model where sets can be inserted and deleted in a

non-trivial way.

Comparison to related work. In the context of streaming algorithms,

for the Max-k-Cover problem, McGregor and Vu [58] showed that

any approximation better than 1/(1 − 1/e) requires Ω(m/k2) space.
For the more general problem of streaming submodular maximiza-

tion subject to a cardinality constraint, Feldman et al. [32] very

recently showed a stronger lower bound that any approximation

better than 2 requires Ω(m) space. Our results provide a route to
circumvent these bounds via parameterization on k, r , and d .

Result (B3) leads to a parameterized algorithm for streaming

SetCover. This new algorithm uses Õ(rk2nδ + n) space which

improves upon the algorithm by Har-Peled et al. [36] that uses

Õ(mn1/δ + n) space, where k is an upper bound for the size of the

minimum set cover, in the case rk2 ≪ m. Both algorithms use

O(1/δ ) passes and yield an O(1/δ ) approximation.

In the context of offline parameterized algorithms, Bonnet et

al. [10] showed that Max-k-Cover is fixed-parameter tractable in

terms of k and d . However, their branching-search algorithm is

not streamable. Misra et al. [60] showed that the maximum unique

coverage problem in which the aim is to maximize the number of

uniquely covered elementsu without any restriction on the number

of sets in the solution is fixed-parameter tractable. This problem

admits a kernel of size 4
u
. On the other hand, they showed that the

budgeted version of this problem (where each element has a profit

and each set has a cost and the goal is maximize the profit subject

to a budget constraint) isW [1]-hard when parameterized by the

budget
6
. In this context, our result shows that a parameterization

on both the maximum set size d and the budget k is possible (at

least when all costs and profits are unit).

2 PRELIMINARIES
2.1 Notation and Parameters
Throughout the paper, m will denote the number of sets, n will

denote the size of the universe, and k will denote the maximum

number of sets that can be used in the solution. Given input sets

S1, S2, . . . , Sm ⊂ [n], let

d = max

i
|Si |

be the maximum set size and let

r = max

j
|{i : j ∈ Si }|

be the maximum number of sets that contain the same element.

2.2 Structural Preliminaries
Given a collection of sets C = {S1, S2, . . . , Sm }, we say a sub-

collection C ′ ⊂ C is a matching if the sets in C ′ are mutually

disjoint.C ′ is a maximal matching if there does not exist S ∈ C \C ′

such that S is disjoint from all sets in C ′. The following simple

lemma will be useful at various points in the paper.

Lemma 2.1. For any input C , let O ⊂ C be an optimal solution for
either the Max-k-Cover or Max-k-UniqueCover problem. LetMi be
a maximal matching amongst the input set of size i . Then every set
of size i in O of size intersects some set inMi .

Proof. Let S ∈ O have size i . If it was disjoint from all sets inMi
then it could be added toMi and the resulting collection would still

be a matching. This violates the assumption thatMi is maximal. □

The next lemma extends the above result to show that we can

potentially remove many sets from each Mi and still argue that

there is an optimal solution for the original instance amongst the

sets that intersect a set in someMi .

Lemma 2.2. Consider an input of sets of size at most d . For i ∈ [d],
letMi be a maximal matching amongst the input set of size i and let
M ′i be an arbitrary subset ofMi of size min(k + dk, |Mi |). Let Di be
the collection of all sets that intersect a set inM ′i . Then

⋃
i (Di ∪M

′
i )

contains an optimal solution to both the Max-k-UniqueCover and
Max-k-Cover problem.

Proof. If |Mi | = |M
′
i | for all 1 ≤ i ≤ d then the result follows

from Lemma 2.1. Suppose that If not, let j = max{i ∈ [d] : |Mi | >

|M ′i |}. Let O be an optimal solution and let Oi be all the sets in O
of size i . We know that every set in Od ∪Od−1 ∪ . . . ∪O j+1 is in⋃

i≥j+1
(Di ∪M

′
i ) =

⋃
i≥j+1

(Di ∪Mi ) .

6
In theMax-k -UniqueCover problem that we consider, all costs and profits are one

and the budget is k .
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Hence, the number of elements (uniquely) covered by O is at most

the number of elements (uniquely) covered byOd∪Od−1∪. . .∪O j+1
plus kj since every set in O j ∪ . . . ∪O1 (uniquely) covers at most j
additional elements. But we can (uniquely) cover at least the number

of elements (uniquely) covered by Od ∪Od−1 ∪ . . . ∪O j+1 plus kj.
This is becauseMj contains k +dk disjoint sets of size j and at least
k + dk − kd = k of these are disjoint from all sets in Od ∪Od−1 ∪

. . . ∪O j+1. Hence, there is a solution amongst

⋃
i≥j (Di ∪M

′
i ) that

is at least as good as O and hence is also optimal. □

2.3 Sketches and Subsampling
2.3.1 Coverage Sketch. Given a vector x ∈ Rn , F0(x) is defined as

the number of elements of x which are non-zero. If given a subset

S ⊂ {1, . . . ,n}, we define xS ∈ {0, 1}
n
to be the characteristic

vector of S (i.e., xi = 1 iff i ∈ S) then given sets S1, S2, . . . note that
F0(xS1 + xS2 + . . .) is exactly the number of elements covered by

S1 ∪ S2 ∪ . . .. We will use the following result for estimating F0.

Theorem 2.1 ([9, 21]). There exists an Õ(ϵ−2 logδ−1)-space algo-
rithm that, given a set S ⊆ [n], can construct a data structureM(S),
called an F0 sketch of S , that has the property that the number of
distinct elements in a collection of sets S1, S2, . . . , St can be approxi-
mated up to a 1 + ϵ factor with probability at least 1 − δ given the
collection of F0 sketchesM(S1),M(S2), . . . ,M(St ).

Note that if we set δ ≪ 1/(poly(m) ·
(t
k
)
) in the above result

we can try collection of k sets amongst S1, S2, . . . , St and get a

1 + ϵ approximation for the coverage of each collection with high

probability.

2.3.2 Unique Coverage Sketch. For unique coverage, our sketch
of a set corresponds to subsampling the universe via some hash

function h : [n] → {0, 1} where h is chosen randomly such that for

each i , Pr [h(i) = 1] = p for some appropriate value p. Specifically,
rather processing an input set S , we process S ′ = {i ∈ S : h(i) = 1}.

Note that |S ′ | has size p |S | in expectation. This approach was use by

McGregor and Vu [59] in the context of Max-k-Cover and extends

easily toMax-k-UniqueCover; see Appendix A. The consequence
is that if there is a streaming algorithm that finds a t approximation,

we can turn that algorithm into a t(1 + ϵ) approximation algorithm

in which we can assume that OPT = O(ϵ−2k logm) with high prob-

ability
7
by running the algorithm on a subsampled sets rather than

the original sets. Note that this also allows us to assume input sets

have size O(ϵ−2k logm) since |S ′ | ≤ OPT. Hence each “sketched"

set can be stored in B = O(ϵ−2k logm logn) bits.

2.3.3 AlgorithmwithΩ(m)Memory. Wewill use the above sketches

in a more interesting context later in the paper, note that they im-

mediately imply a trivial algorithmic result. Consider the naive

algorithm that stores every set and finds the best solution; note

that this requires exponential time. We note that since we can as-

sume OPT = O(ϵ−2k logm), each set has size at mostO(ϵ−2k logm).
Hence, we need Õ(ϵ−2mk) memory to store all the sets. This ap-

proach was noted in [59] in the context of Max-k-Cover but also
apples toMax-k-UniqueCover. We will later explain that for a 1+ϵ
approximation, the above trivial algorithm is optimal up to poly-

logarithmic factors for constant k .

7
Throughout this paper, we say an algorithm is correct with high probability if the

probability of failure is inversely polynomial inm.

3 EXACT ALGORITHMS
Let C be the input sets. In this section we will initially assume all

input sets have size exactly d and will show that there exists a

single-pass data stream algorithm that uses Õ(dd+1kd ) space and
returns a collection of sets C ′ ⊂ C such that the optimal solution

for either the maximum coverage or unique coverage problem

when restricted to C ′ is equal to the optimal solution with no such

restriction. We will subsequently generalize this to the case when

sets can have any size at most d . In this section we will assume that

r can be unbounded, e.g., an element in the universe could appear

inm of the input sets.

3.1 Warm-Up Idea
Appealing to Lemma 2.1, we know that sets in an optimal solution

to maximum coverage or maximum unique coverage intersect with

a maximal matching. Hence, a natural approach is to construct a

maximimal matching A greedily as the sets arrive along with any

set that intersects a set in A. If the maximal matching ever exceeds

size k then we have an optimal solution to Max-k-Cover and Max-
k-UniqueCover that covers dk elements and hence we can ensure

|A| ≤ k . However, a set in A could intersect with Ω(m) other sets
in the worst case

8
The main technical step in the algorithm in the

next section is a way to carefully store only some of the sets that

intersect A such that we can bound the number of stored sets in

terms of k and d and yet still assume that stored sets include an

optimal solution to eitherMax-k-Cover orMax-k-UniqueCover.

3.2 Algorithm
(1) Let A and Xu (for all u ∈ [n]) be empty sets. Each will corre-

spond to a collection of sets. Let b = d(k − 1).
(2) Process the stream and let S be the next set:

(a) If S is disjoint from all sets in A and |A| < k , add S to A.
(b) If u ∈ S ∩ S ′ for some S ′ ∈ A:

(i) Add S toXu if there does not exist a subsetT ⊂ (S \{u})
that occurs as subset of (b + 1)d−1−|T | sets in Xu .

(3) Return the best solution in C ′ = A ∪ (
⋃
u Xu ).

3.3 Analysis
We start with the following combinatorial lemma

9
.

Lemma 3.1. Let X = {S1, S2, . . .} be a collection of distinct sets
where each Si ⊂ [n] and |Si | = a. Suppose for all T ⊆ [n] with
|T | ≤ a there exists at most

ℓ |T | := (b + 1)
a−|T |

sets in X that contain T . Furthermore suppose there exists a set T ∗

such that this inequality is tight. Then, for all B ⊂ [n] disjoint fromT ∗

with |B | ≤ b there exists Si ∈ X such that T ∗ ⊂ Si and |Si ∩ B | = 0.

8
It can be bounded in terms ofd and r however. Specifically, each set can intersect with
at most d (r − 1) other sets. However, in this section we are assuming r is unbounded

so this bound does not help us here.

9
For the interested reader who is familiar with the relevant combinatorial results, we

note that we can prove a similar lemma to the one here via the Sunflower Lemma [4, 62].

In particular, one can argue that there exists a sufficiently large sunflower amongst

{S ∈ X : T ∗ is a subset of S } whose core includes T ∗ . With some small adjustment

to the subsequent theorem, this would be sufficient for our purposes. However, we

instead include this version of the lemma because it is simpler and self-contained.
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u v SS’

Figure 1: An example where all sets have size 4. Suppose the
three dotted sets are currently stored in Xu . If S intersects
u, it may not be added to Xu even if S is in an optimal solu-
tion O . In the above diagram, the elements covered by sets
inO \ {S} are shaded (note that the sets inO other than S are
not drawn). In particular, if a subsetT of S \ {u} is a subset of
many sets currently stored inXu , it will not be added. For ex-
ample,T = {v} already occurs in the three subsets currently
in Xu and, for the sake of a simple diagram, suppose 3 is the
threshold for the maximum number of times a subset may
appear in sets in Xu . Our analysis shows that there always
exists a set S ′ in Xu that is “as good as” S in the sense that
S ′ ∩ S = T ∪ {u} and all the elements in S ′ \ S are elements
not covered by sets in O \ {S}.

Proof. If |T ∗ | = a then T ∗ ∈ X and this set satisfies the neces-

sary conditions. Henceforth, assume |T ∗ | < a. Consider the ℓ |T ∗ |
sets in X that are supersets of T ∗. Call this collection X ′. For any
x ∈ B, there are at most ℓ |T ∗ |+1 sets that include T

∗ ∪ {x}. Since
there are b choices for x , at most

bℓ |T ∗ |+1 = b(b + 1)
a−|T ∗ |−1 < (b + 1)a−|T

∗ | = ℓ |T ∗ |

sets in X ′ contains an element in B. Hence, at least one set in X
does not contain any element in B. □

For any collection of sets F , let f (F ) be the maximum coverage

of at most k sets in F and let д(F ) be the maximum unique coverage

of at most k set in F .

Theorem 3.1. The output of the algorithm satisfies f (C ′) = f (C)
and д(C ′) = д(C).

Proof. Let C0 be the union of A and all sets that intersect a set

in A, i.e.,

C0 = {S ∈ A} ∪ {S ∈ C : |S ∩ S ′ | > 0 for some S ′ ∈ A} .

Note that every set in the optimum solution of maximum coverage

intersects with some set in A and hence f (C0) = f (C). For i ≥ 1

consider,

Ci = C0 \ {first i sets in stream that are not in output C ′} .

We will next argue that for any i ≥ 0, f (Ci+1) = f (Ci ) and the

theorem follows.

Let O be an optimum solution in Ci and let {S} = Ci \Ci+1. If
S < O then clearly f (Ci+1) = f (Ci ) since O ⊆ Ci+1. If S ∈ O but

not in Ci+1 then let u ∈ S be the node for which we contemplated

adding S to Xu but didn’t because of the additional requirements.

Claim 1. There exists S ′ in Xu such that f ((O \ {S}) ∪ {S ′}) =
f (Ci ) as required.

Proof of Claim. If S was not added to Xu there exists a subset

of T ∗ ⊂ (S \ {u}) that is a subset of (b + 1)d−1−|T
∗ |
sets in Xu . Let

X be the collection of sets of size a = d − 1 formed by removing u
from each of the sets in Xu . Note that X satisfies the assumptions

of Lemma 3.1. Let B be the set of at most b = d(k − 1) elements in

the set

B = {v : v ∈ S ′′ for some S ′′ ∈ O} \ S .

By Lemma 3.1, there exists a set S ′ in X such that T ∗ ⊂ S ′ and
|(S ′ \T ∗) ∩ B | = 0. Hence, f ((O \ {S}) ∪ {S ′}). □

The proof for unique coverage, i.e., д(), is identical. □

Lemma 3.2. The space used by the algorithm is Õ(dd+1kd ).

Proof. Recall that one of the requirements for a set S to be added
to Xu is that the number of sets in Xu that are supersets of any

subset of S \ {u} of size t is at most (b + 1)d−1−t . This includes the
empty subset and since every set in Xu is a superset of the empty

set, we deduce that

|Xu | ≤ (b + 1)
d−1−0 = (b + 1)d−1.

Since |A| ≤ k , the number of sets that are stored is at most

|A| +
∑

u ∈∪S∈A

|Xu | ≤ |A| + d |A| · (b + 1)d−1

≤ |A| + d |A| ·O((dk)d−1)

= O((dk)d ) .

□

3.4 Generalization to Sets of Different Size
In the case where sets may have any size at most d , we run the

algorithm described in Section 3.2 in parallel for stream sets of each

size t ∈ [d]. By appealing to Lemma 2.2, we know that an optimal

maximum overage or maximum unique coverage intersects with

the union of maximal matchings of sets of size t for each t . We

again rely on Lemma 3.1 to establish that we can store only some

of the sets that intersect these matchings and still retain an optimal

solution to either coverage problem. We describe the algorithm

below.

(1) Let At and Xu ,t (for all u ∈ [n] and t ∈ [d]) be empty sets.

Each will correspond to a collection of sets. Let b = d(k − 1).
(2) Process the stream and let S be the next set and let t = |S |:
(a) If S is disjoint from all sets in At and

|At | <

{
dk + k if t < d

k if t = d

then add S to At .
(b) If u ∈ S ∩ S ′ for some S ′ ∈ At :

(i) Add S to Xu ,t if there does not exist a subset T ⊂ (S \

{u}) that occurs as subset of (b + 1)t−1−|T | sets in Xu .
(3) Return C ′′ = (

⋃
t At ) ∪

(⋃
u ,t Xu ,t

)
.

Theorem 3.2. The output of the algorithm satisfies f (C ′′) = f (C)
and д(C ′′) = д(C).
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Proof. Let

C0 =
⋃
t

(
{S ∈ At } ∪ {S ∈ C : |S ∩ S ′ | > 0 for some S ′ ∈ A}

)
.

Define Ci ,O, and S as in the proof of Theorem 3.1. By Lemma

2.2, f (C0) = f (C) since there is an optimum solution of maximum

coverage inwhich every set intersects with some setAt . Letu ∈ S be
the node which prevented us from adding S to Xu ,t . We now prove

an analog of Claim 1 which implies that for any i ≥ 0, f (Ci+1) =
f (Ci ).

Claim 2. There exists S ′ in Xu ,t such that f ((O \ {S}) ∪ {S ′}) =
f (Ci ) as required.

Proof of Claim. If S was not added to Xu ,t there exists of a

subset ofT ∗ ⊂ (S \ {u}) that is a subset of (b + 1)t−1−|T
∗ |
sets in Xu .

Let X be the collection of sets of size a = t − 1 formed by removing

u from each of the sets inXu .X satisfies the assumptions of Lemma

3.1. Let B be the set of at most b = d(k − 1) elements in the set

B = {v : v ∈ S ′′ for some S ′′ ∈ O} \ S .

By Lemma 3.1, there exists a set S ′ in X such that T ∗ ⊂ S ′ and
|(S ′ \T ∗) ∩ B | = 0. Hence, f ((O \ {S}) ∪ {S ′}) □

Again, the proof is identical for unique coverage. □

Lemma 3.3. The space used by the algorithm is Õ(dd+1kd ).

Proof. For all t , |Xu ,t | ≤ (b + 1)
t−1

. Since |Ad | ≤ k and |At | =
O(dk) for t < k , the number of sets stored is at most:

d∑
t=1

©­«|At | +
∑

u ∈
⋃
S∈At

|Xu ,t |
ª®¬

≤ O(d2k + d2k(1 + (b + 1) + . . . + (b + 1)d−2) + dk(b + 1)d−1)

= O((dk)d ) .

□

We summarize the result as a theorem.

Theorem 3.3. There exists a single-pass, Õ(dd+1kd )-space al-
gorithm that yields an exact solution to Max-k-Cover and Max-k-
UniqueCover.

4 APPROXIMATION ALGORITHMS
In this section, we present a variety of different approximation

algorithms where the space used by the algorithm is independent

of d but, in some cases, may depend on r .

4.1 Unique Coverage: 2 + ϵ Approximation
In this section, we present a 2 + ϵ approximation for unique cov-

erage. The algorithm is simple but the analysis is non-trivial. The

algorithm stores the ηk largest sets where η = ⌈r/ϵ⌉ and finds the

best unique coverage achievable by selecting at most k of these

sets.

We will present an algorithm with a 1 + ϵ approximation in the

next subsection with the expense of an extra k/ϵ factor in the space

use. However, the algorithm in this section is appealing in the sense

that it is much simpler and can be extended to insertion-deletion

streams. The analysis of this approach may also be of independent

interest.

Let C ′ be the ηk sets of largest size. To find the best solution

C ′′ amongst C ′, we use the unique coverage sketches presented
in the Section 2. Note that to find the ηk largest sets we just store

the sizes of sets sketched so far along with their unique coverage

sketches. Finally, we return the best solution C ′′ using most k sets

in C ′ based on the unique coverage sketches that we store. Recall

that each unique coverage sketch requires Õ(k/ϵ2) space. We have

the following result.

Theorem 4.1. There exists a randomized single-pass algorithm
using Õ(ϵ−2ηk) = Õ(ϵ−3k2r ) space algorithm that 2+ϵ approximates
Max-k-UniqueCover.

Proof. Let the sizes of the ηk largest sets be (with arbitrarily

tie-breaking) be d1 ≥ d2 ≥ . . . ≥ dηk and let

d∗ :=
d1 + . . . + dk

k
and d ′ :=

dk+1 + . . . + dηk

(η − 1)k
.

LetO be an optimal collection of sets forMax-k-UniqueCover. First,
we observe that for each set S ∈ O\C ′, we have that |S | ≤ dηk ≤ d ′.
Hence,

OPT ≤ f (O ∩C ′) +
∑

S ∈O\C ′
|S | ≤ h(C ′′) + kd ′ .

whereh() is a function of a collection of sets that returns the number

of elements that are covered by exactly one of these sets. Thus, if

kd ′ < 0.5OPT, then it is immediate that the number of elements

uniquely covered by our solution is h(C ′′) > 0.5OPT.

Nowwe consider the casekd ′ ≥ 0.5OPT. For the sake of analysis,

consider randomly partitioning C ′ into a set C ′
1
of size k and C ′

2
=

C ′ \C ′
1
. Observe that

E

[
h(C ′

1
)
]

=
∑
S ∈C ′

E

[
# of elements uniquely covered by S in C ′

1

]
=

∑
S ∈C ′

∑
u ∈S

Pr

[
S ∈ C ′

1
and u is uniquely covered in C ′

1

]
≥

∑
S ∈C ′

∑
u ∈S

©­«Pr
[
S ∈ C ′

1

]
−

∑
S ′∈C\{S }:u ∈S ′

Pr

[
S ∈ C ′

1
, S ′ ∈ C ′

1

]ª®¬
≥

∑
S ∈C ′
|S |

(
ϵ/r − (r − 1)(ϵ/r )2

)
≥ ηk · d ′

(
ϵ/r − r (ϵ/r )2

)
≥ kd ′ (1 − ϵ) ≥ (1 − ϵ)OPT/2 .

□

We note that it is possible to improve the result slightly in the

case r = 2 by setting η =
√
2/ϵ . This results in saving a factor of

O(ϵ−1/2) in the space. See Appendix B for details.

Extension to Insert/Delete Streams. We now explain how the above

approach can be extended to the case where sets may be inserted

and deleted. In this setting, it is not immediately obvious how to

select the largest ηk sets; the approach used when sets are only

inserted does not extend. Note that in this model we can setm to
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be that maximum number of sets that have been inserted and not

deleted at any prefix of the stream rather than the total number of

sets inserted/deleted.

However, we can extend the result as follows. Suppose the sketch

of a set for approximating maximum unique coverage requires B
bits; recall from Section 2.3 that B = kϵ−2 polylog(n,m) suffices. We

can encode such a sketch of a set S as an integer i(S) ∈ [2B ]. Suppose
we know that exactly ηk sets have size at least some threshold t . We

will remove this assumption shortly. Consider the vector x ∈ [N ]
where N = 2

B
that is initially 0 and then is updated by a stream of

set insertions/deletions as follows:

(1) When S is inserted, if |S | ≥ t , then xi(S ) ← xi(S ) + 1.
(2) When S is deleted, if |S | ≥ t , then xi(S ) ← xi(S ) − 1.

At the end of this process x ∈ {0, 1, . . . , ,m}2
B
, ℓ1(x) = ηk , and

reconstruct the sketches of largest ηk sets given x . Unfortunately,
storing x explicitly in small space is not possible since, while we are

promised that at the end of the stream ℓ1(x) = ηk , during the stream
it could be that x is an arbitrary binary string withm one’s and this

requires Ω(m) memory to store. To get around this, it is sufficient

to maintain a linear sketch of x itself that support sparse recovery.

For our purposes, the CountMin Sketch [22] is sufficient although

other approaches are possible. The CountMin Sketch allows x to

reconstructed probability 1 − δ using a sketch of size

O(logN + ηk log(ηk/δ ) logm) = O(ηkϵ−2 polylog(n,m)) .

To remove the assumption that we do not know t in advance,

we consider values:

t0, t1, . . . , t ⌈log
1+ϵ m ⌉ where ti = (1 + ϵ)

i .

We define vector x0, x1, . . . ∈ {0, 1, . . . , ,m}2
B
where x i is only

updated when a set of size ≤ ti but > ti−1 is inserted/deleted.

Then there exists i such that ≤ ηk sets have size ≤ ti−1 and the

sketches of these sets can be reconstructed from x0, . . . , xti−1 . To
ensure we have ηk sets, we may need some additional sketches

corresponding to sets of size > ti−1 and ≤ ti but unfortunately
there could bem such sets and we are only guaranteed recover of

xti when it is sparse. However, if this is indeed the case we can still

recover enough entries of xt1 by first subsampling the entries at the

appropriate rate (we can guess sampling rate 1, 1/2, 1/22, . . . 1/m)

in the standard way. Note that we can keep track of ℓ1(x
i ) exactly

for each i using O(logm) space.

4.2 Unique Coverage: 1 + ϵ Approximation
The approximation factor in the previous section can be improved

to 1 + ϵ at the expense of an extra factor of k/ϵ in the space. Re-

call in Section 3.1 that there exists an algorithm for solving Max-
k-UniqueCover exactly by storing O(kdr ) sets, i.e., with Õ(kd2r )
space. Combining this with the Subsampling Framework discussed

in Section 2.3.1, we may assume d ≤ OPT = O(ϵ−2k logm). This
immediately implies the following theorem.

Theorem 4.2. There exists a randomized one-pass algorithm us-
ing Õ(ϵ−4k2r ) space that finds a 1 + ϵ approximation of Max-k-
UniqueCover.

Note that the same approach would work for Max-k-Cover but
we present a better result in Section 4.4.

4.3 Unique Coverage: O(logmin(k, r )) Approx.
We now present an algorithm whose space does not depend on r
but the result comes at the cost of increasing the approximation

factor to O(log(min(k, r ))). It also has the feature that the running

time is polynomial in k in addition to being polynomial inm and n.
The basic idea is as follows: We consider an existing algorithm

that first finds a 2 approximation for theMax-k-Cover problem. Let

the corresponding solution beC ′. The algorithm then finds the best

solution ofMax-k-UniqueCover among the sets in C ′.
Let z∗ be a guess such that (1 − ϵ)OPT∗ ≤ z∗ ≤ OPT

∗
where

OPT
∗
is the value of the optimalMax-k-Cover.

(1) Initialize T = ∅ which will store sets from the stream.

(2) For each set S in the stream, if |T | < k and

|(∪A∈TA) ∪ S | − |∪A∈TA| ≥ z∗/(2k) ,

then add S to T and store S in the memory.

(3) Return the best solution Q (in terms of unique coverage)

among the sets in T .

The following theorem captures the above algorithm.

Theorem 4.3. There exists a randomized one-pass, Õ(k2)-space,
algorithm that with high probability finds aO(logmin(k, r )) approx-
imation of Max-k-UniqueCover.

Proof. It has been shown in previous work [8, 59] that T is a

2 + ϵ approximation of Max-k-Cover. Demaine et al. [25] proved

thatQ is anO(logmin(k, r )) approximation ofMax-k-UniqueCover.
In fact, they presented a polynomial time algorithm to find Q from

T such that the number of uniquely covered elements is at least

Ω(1/logk)· |∪A∈TA| ≥ Ω(1/logk)·1/2 ·OPT∗ ≥ Ω(1/logk)·OPT .

We note that OPT
∗ ≤ k OPT. Otherwise, one can find a set that

covers more than OPT elements which is a contradiction.

The above algorithm needs to keep track of the elements be-

ing covered by T at all points during the stream. This requires

Õ(OPT∗) = Õ(k OPT) space. Furthermore, storing the sets in T
needs Õ(k OPT) space. Finally, guessing z∗ entails aO(ϵ−1 logOPT)
factor. Thus, the algorithm uses Õ(ϵ−1k OPT) space which could be

translated into another algorithm that uses Õ(ϵ−3k2) space after us-
ing the subsampling framework. For the purpose of the proving the

claimed approximation factor we can set ϵ to a small constant. □

4.4 Maximum Coverage and Set Cover
In this section, we generalize the approach of Manurangsi [52] and

combine that with F0-sketch to obtain a 1 + ϵ approximation using

Õ(ϵ−3k2r ) space for the maximum coverage problem.

Manurangsi [52] showed that for the maximum k-vertex cover
problem, the Θ(k/ϵ) vertices with highest degrees form a 1 + ϵ
approximation kernel. That is, there exist k vertices among those

that cover (1 − ϵ)OPT edges. We now consider a set system in

which an element belongs to at most r sets (this can also be viewed

as a hypergraph where each set corresponds to a vertex and each

element corresponds to a hyperedge; we then want to find k vertices

that touch as many hyperedges as possible).

We begin with the following lemma that generalizes the afore-

mentioned result in [52]. We may assune thatm ≫ Crk/ϵ for some

large constant C; otherwise, we can store all the sets.
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Lemma 4.1. Supposem > ⌈rk/ϵ⌉. LetK be the collection of ⌈rk/ϵ⌉
sets with largest sizes (tie-broken arbitrarily). There exist k sets in K
that cover (1 − ϵ)OPT elements.

Proof. Let O denote the collection of k sets in some optimal

solution. Let Oin = O∩K and Oout = O\K . We consider a random

subset Z ⊂ K of size |Oout |. We will show that the sets in Z ∪ Oin

cover (1 − ϵ)OPT elements in expectation; this implies the claim.

Let χ (Z ) denote the set of elements covered by the sets in Z . Let
[E] denote the indicator variable for event E. We rewrite

|χ (Z ∪ Oin )| = |χ (Oin )| + |χ (Z )| − |χ (Oin ) ∩ χ (Z )| .

Furthermore, the probability that we pick a set S in K to add to

Z is

p :=
|Oout |

|K |
≤

k

kr/ϵ
=

ϵ

r
.

Next, we upper bound E

[
|χ (Oin ) ∩ χ (Z )|

]
. We have

E

[
|χ (Oin ) ∩ χ (Z )|

]
≤

∑
u ∈χ (Oin )

∑
S ∈K :u ∈S

Pr [S ∈ Z ]

≤
∑

u ∈χ (Oin )

rp ≤ |χ (Oin )| · ϵ .

We lower bound E [|χ (Z )|] as follows.

E [|χ (Z )|]

≥ E


∑
S ∈K

©­«|S |[S ∈ Z ] −
∑

S ′∈K\{S }

|S ∩ S ′ |[S ∈ Z ∧ S ′ ∈ Z ]
ª®¬


≥
∑
S ∈K

©­«|S |p −
∑

S ′∈K\{S }

|S ∩ S ′ |p2
ª®¬

≥
∑
S ∈K

(
|S |p − r |S |p2

)
≥ p(1 − pr )

∑
S ∈K
|S | ≥ p(1 − ϵ)

∑
S ∈K
|S | .

In the above derivation, the second inequality follows from the

observation that Pr [S ∈ Z ∧ S ′ ∈ Z ] ≤ p2. The third inequality is

because

∑
S ′∈K\{S } |S ∩ S

′ | ≤ r |S | since each element belongs to

at most r sets.
For all S ∈ K , we must have have

|S | ≥

∑
Y ∈Oout |Y |

|Oout |
≥
|χ (Oout )|

|Oout |
.

Thus,

E [|χ (Z )|] ≥ p (1 − ϵ) |K |
|χ (Oout )|

|Oout |
= p (1 − ϵ)

|χ (Oout )|

p

= (1 − ϵ)|χ (Oout )| .

Putting it together,

E

[
|χ (Z ∪ Oin )|

]
≥ |χ (Oin )| + (1 − ϵ)|χ (Oout )| − |χ (Oin )| · ϵ

≥ (1 − ϵ)OPT .

□

With the above lemma in mind, the following algorithm’s cor-

rectness is immediate.

(1) Store F0-sketches of the kr/ϵ largest sets, where the failure

probability of the sketches is set to
1

poly(n)(mk )
.

(2) At the end of the stream, return the k sets with the largest

coverage based on the estimates given by the F0-sketches.

We restate our result as a theorem.

Theorem 4.4. There exists a randomized one-pass, Õ(k2r/ϵ3)-
space, algorithm that with high probability finds a 1+ϵ approximation
toMax-k-Cover.

Application to Parameterized Set Cover. We parameterize the set

cover problem as follows. Given a set system, either A) output a set

cover of size αk if OPT ≤ k where α the approximation factor or

B) correctly declare that a set cover of size k does not exist.

Theorem 4.5. There exists a randomized,O(1/δ )-pass, Õ(rk2n1/δ+
n)-space, algorithm that with high probability finds aO(1/δ ) approx-
imation of the parameterized set cover problem.

Proof. In each pass, we run the algorithm in Theorem 4.4 with

parameters k and ϵ = 1/nδ/3 on the remaining uncovered elements.

The space use is Õ(rk2n1/δ + n). Here, we need additional Õ(n)
space to keep track of the remaining uncovered elements.

Note that if OPT ≤ k , after each pass, the number of uncovered

elements is reduced by a factor 1/nδ/3. This is because if n′ is the
number of uncovered elements at the beginning of a pass, then after

that pass, we cover all but at most n′/nδ/3 of those elements. After i

passes, the number of remaining uncovered elements isO(n1−iδ/3);
we therefore use at most O(1/δ ) passes until we are done. At the
end, we have a set cover of size O(k/δ ).

If after ω(1/δ ) passes, there are still remaining uncovered ele-

ments, we declare that such a solution does not exist. □

Our algorithm improves upon the algorithm by Har-Peled et

al. [36] that uses Õ(mn1/δ + n) space for when rk2 ≪ m and also

yields an O(1/δ ) approximation.

Extension to Insert/Delete Streams. The result can be extended to the
case where sets are inserted and deleted using the same approach

as that used for unique coverage.

5 LOWER BOUNDS
5.1 Lower Bounds for Exact Solutions
As observed earlier, any exact algorithm for either theMax-k-Cover
or Max-k-UniqueCover problem on an input where all sets have

size d will return a matching of size k if one exists. However, by a

lowerbound due to Chitnis et al. [18] we know that determining

if there exists a matching of size k in a single pass requires Ω(kd )
space. This immediately implies the following theorem.

Theorem 5.1. Any single-pass algorithm that solvesMax-k-Cover
or Max-k-UniqueCover exactly with probability at least 9/10 re-
quires Ω(kd ) space.

5.2 Lower bound for a e1−1/k approximation
The strategy is similar to previous work onMax-k-Cover [58, 59].
However, we need to argue that the relevant probabilistic construc-

tion works for all collections of fewer than k sets since the unique

coverage function is not monotone. This extra argument will also

allow us to show that the lower bound also applies to bi-criteria
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approximation in which we are allowed to pick more than k sets

(this is not the case forMax-k-Cover).
We make a reduction from the communication problem k-player

set disjointness, denoted by DISJ(m,k). In this problem, there are

k players where the ith player has a set Si ⊆ [m]. It is promised

that exactly one of the following two cases happens a) NO instance:

All the sets are pairwise disjoint and b) YES instance: There is

a unique element v ∈ [m] such that v ∈ Si for all i ∈ [k] and
all other elements belong to at most one set. The (randomized)

communication complexity, for some large enough constant success

probability, of the above problem in p-round, one-way model is

Ω(m/(pk)) even if the players may use public randomness [14]. We

can assume that |S1 ∪ S2 ∪ . . .∪ Sk | ≥ m/4 via a padding argument.

Theorem 5.2. Any constant-pass randomized algorithm with an
approximation better than e1−1/k for Max-k-UniqueCover requires
Ω(m/k2) space.

Proof. Consider a sufficiently large n where k divides n. For
each i ∈ [m], letPi be a randompartition of [n] intok setsV i

1
, . . . ,V i

k
such that an element in the universe U = [n] belongs to exactly

one of these sets uniformly at random. In particular, for all i ∈ [m]
and v ∈ U ,

Pr

[
v ∈ V i

j ∧ (∀j
′ , j,v < V i

j′)
]
= 1/k .

The partitions are chosen independently using public random-

ness before receiving the input. For each player j, if i ∈ Sj , then

they put V i
j in the stream. Note that the stream consists of Θ(m)

sets.

If the input is a NO instance, then for each i ∈ [m], there is at
most one set V i

j in the stream. Therefore, for each element v ∈ [n]

and any collection of ℓ ≤ k sets V i1
j1
, . . . ,V iℓ

jℓ
in the stream,

Pr

[
v is uniquely covered by V i1

j1
, . . . ,V iℓ

jℓ

]
= ℓ/k · (1 − 1/k)ℓ−1

≤ ℓ/k · e−(ℓ−1)/k .

Therefore, in expectation, µℓ := E

[
h({V i1

j1
, . . . ,V iℓ

jℓ
})

]
≤ ℓ/k ·

e−(ℓ−1)/kn where h() is the number of elements that are uniquely

covered. By an application of Hoeffding’s inequality,

Pr

[
h({V i1

j1
∪ . . . ∪V iℓ

jℓ
}) > µℓ + ϵe

−(k−1)/k · n
]

≤exp

(
−2ϵ2e−2(ℓ−1)/kn

)
≤exp

(
−Ω(ϵ2n)

)
≤

1

m10k
.

The last inequality follows by letting n = Ω(ϵ−2k logm). The
following claim shows that for large k , in expectation, picking k
sets is optimal in terms of unique coverage.

Lemma 5.1. The function д(ℓ) = ℓ/k · e−(ℓ−1)/kn is increasing in
the interval (−∞,k] and decreasing in the interval [k,+∞).

Proof. We take the partial derivative of д with respect to ℓ

∂д

∂ℓ
=

e(1−ℓ)/k (k − ℓ)

k2
· n

and observe that it is non-negative if and only if ℓ ≤ k . □

By appealing to the union bound over all

(m
1

)
+. . .+

( m
k−1

)
+
(m
k
)
≤

O(mk+1) possible collections ℓ ≤ k sets, we deduce that with high

probability, for all collections of ℓ ≤ k sets S1, . . . , Sℓ ,

h({S1, . . . , Sℓ}) ≤ µℓ + ϵe
−(k−1)/k · n

≤ ℓ/k · e−(ℓ−1)/kn + ϵe−(k−1)/k · n

≤ (1 + ϵ)e−1+1/kn .

If the input is a YES instance, then clearly, themaximumk-unique
coverage isn. This is because there exists i such that i ∈ S1∩ . . .∩Sk
and therefore V i

1
, . . . ,V i

k are in the stream and these sets uniquely

cover all elements.

Therefore, any constant pass algorithm that finds a (1+2ϵ)e1−1/k

approximation of Max-k-UniqueCover for some large enough con-

stant success probability implies a protocol to solve DISJ(m,k).
Thus, Ω(m/k2) space is required. □

Remark. Since д(ℓ) is decreasing in the interval [k,m], the lower
bound also holds for bi-criteria approximation where the algorithm

is allows to pick more than k sets.

5.3 Lower bound for 1 + ϵ approximation
Assadi [6] presents a O (m/ϵ2) lower bound for the space required

to compute a 1 + ϵ approximation for Max-k-Cover when k = 2,

even when the stream is in a random order and is allowed constant

passes. This is accomplished via a reduction to multiple instances

of the Gap-Hamming Distance problem on a hard input distribu-

tion, where an input with high maximum coverage corresponds

to a YES answer for some Gap-Hamming Distance instance, and a

low maximum coverage corresponds to a NO answer for all GHD

instances. This hard distribution has the additional property that

high maximum coverage inputs also have high maximum unique

coverage, and low maximum coverage inputs have low maximum

unique coverage. Therefore, the following corollary holds:

Corollary 5.1. Any constant-pass randomized algorithm with an
approximation factor 1+ϵ forMax-k-UniqueCover requiresΩ(m/ϵ2)
space.
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A THE SUBSAMPLING FRAMEWORK
Assuming we have v such that OPT/2 ≤ v ≤ OPT. Let h : [n] →
{0, 1} be a hash function that is Ω(ϵ−2k logm)-wise independent.
We run our algorithm on the subsampled universe U ′ = {u ∈ U :

h(u) = 1}. Furthermore, let

Pr [h(u) = 1] = p =
ck logm

ϵ2v
where c is some sufficiently large constant. Let S ′ = S ∩ U ′ and
let OPT

′
be the optimal unique coverage value in the subsampled

set system. The following result is from our previous work [59].

We note that the proof is the same except that the indicator vari-

ables now correspond to the events that an element being uniquely

covered (instead of being covered).

Lemma A.1. With probability at least 1− 1/poly(m), we have that

p OPT(1 + ϵ) ≥ OPT
′ ≥ p OPT(1 − ϵ)

Furthermore, if S1, . . . , Sk satisfies UC({S ′
1
, . . . , S ′k }) ≥ p OPT(1 −

ϵ)/t then
UC({S1, . . . , Sk }) ≥ OPT(1/t − 2ϵ) .

We could guess v = 1, 2, 4, . . . ,n. One of the guesses must be

between OPT/2 and OPT which means OPT
′ = O(ϵ−2k logm).

Furthermore, if we find a 1/t approximation on the subsampled

universe, then that corresponds to a 1/t − 2ϵ approximation in

the original universe. We note that as long as v ≤ OPT and h is

Ω(ϵ−2k logm)-wise independent, we have (see [64], Theorem 5):

Pr

[
UC({S ′

1
, . . . , S ′ℓ}) = p ·UC({S1, . . . , Sℓ}) ± ϵp OPT

]
≥1 − exp (−Ω(k logm))

≥1 − 1/mΩ(k ) .

This gives us Lemma A.1 even for when v < OPT/2. However, if

v ≤ OPT/2, then OPT
′
may be larger than O(ϵ−2k logm), and we

may use too much memory. To this end, we simply terminate those

instantiations. Among the instantiations that are not terminated,

we return the solution given by the smallest guess.

B IMPROVING THEOREM 4.1 WHEN r = 2

Specifically, in the proof of suffices to set η =
√
2/ϵ change the

bound of for E

[
h(C ′

1
)
]
in the proof of Theorem 4.1 as follows:

E

[
h(C ′

1
)
]
=

∑
S ∈C ′

E

[
# of elements uniquely covered by S in C ′

1

]
≥

∑
S ∈C ′

∑
i ∈S

k

ηk

(η − 1)k

ηk − 1

=
1

η
·

(
(η − 1)k

ηk − 1

) ∑
S ∈C ′
|S |

>
η − 1

η2
(
kd∗ + (η − 1)kd ′

)
≥ OPT(1/η − 1/η2 + (1 − 1/η)20.5)

= OPT(0.5 − 0.5/η2)

= (0.5 − ϵ)OPT .

The space used in resulting algorithm scales with ϵ−2.5 rather
than ϵ−3 as implied by the analysis for general r .
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