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Finding the connected components of a graph is a fundamental problem with uses throughout computer
science and engineering. The task of computing connected components becomes more difficult when graphs
are very large, or when they are dynamic, meaning the edge set changes over time subject to a stream of edge
insertions and deletions. A natural approach to computing the connected components problem on a large,
dynamic graph stream is to buy enough RAM to store the entire graph. However, the requirement that the
graph fit in RAM is an inherent limitation of this approach and is prohibitive for very large graphs. Thus,
there is an unmet need for systems that can process dense dynamic graphs, especially when those graphs are
larger than available RAM.

We present a new high-performance streaming graph-processing system for computing the connected
components of a graph. This system, which we call GraphZeppelin, uses new linear sketching data struc-
tures (CubeSketch) to solve the streaming connected components problem and as a result requires space
asymptotically smaller than the space required for an lossless representation of the graph. GraphZeppelin is
optimized for massive dense graphs: GraphZeppelin can process millions of edge updates (both insertions
and deletions) per second, even when the underlying graph is far too large to fit in available RAM. As a result
GraphZeppelin vastly increases the scale of graphs that can be processed.

CCS Concepts: • Theory of computation→ Sketching and sampling; • Mathematics of computing→
Graph algorithms.

Additional Key Words and Phrases: Linear Sketching, Streaming Algorithms, External Memory

Authors’ addresses: David Tench, Rutgers University, New Brunswick, NJ, USA, dtench@pm.me; Evan West, Stony Brook
University, Stony Brook, NY, USA, etwest@cs.stonybrook.edu; Victor Zhang, Rutgers University, New Brunswick, NJ, USA,
victor@vczhang.com; Michael A. Bender, Stony Brook University, Stony Brook, NY, USA, bender@cs.stonybrook.edu;
Abiyaz Chowdhury, Stony Brook University, Stony Brook, NY, USA, abchowdhury@cs.stonybrook.edu; Daniel Delayo,
Stony Brook University, Stony Brook, NY, USA, ddelayo@cs.stonybrook.edu; J. Ahmed Dellas, Rutgers University, New
Brunswick, NJ, USA, jad525@scarletmail.rutgers.edu; Martín Farach-Colton, Rutgers University, New Brunswick, NJ, USA,
martin@farach-colton.com; Tyler Seip, MongoDB, New York, NY, USA, tylerjseip@gmail.com; Kenny Zhang, Stony Brook
University, Stony Brook, NY, USA, kzzhang@cs.stonybrook.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0362-5915/2024/1-ART1 $15.00
https://doi.org/10.1145/3643846

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://doi.org/10.1145/3643846


ACM Reference Format:

David Tench, Evan West, Victor Zhang, Michael A. Bender, Abiyaz Chowdhury, Daniel Delayo, J. Ahmed
Dellas, Martín Farach-Colton, Tyler Seip, and Kenny Zhang. 2024. GraphZeppelin: How to Find Connected
Components (Even When Graphs Are Dense, Dynamic, and Massive) . ACM Trans. Datab. Syst. 1, 1, Article 1
(January 2024), 31 pages. https://doi.org/10.1145/3643846

1 INTRODUCTION

Finding the connected components of a graph is a fundamental problem with uses throughout com-
puter science and engineering. A recent survey by Sahu et al. [72] of industrial uses of algorithms
reports that, for both practitioners and academic researchers, connected components was the most
frequently performed computation from a list of 13 fundamental graph problems that includes
shortest paths, triangle counting, and minimum spanning trees. It has applications in scientific
computing [68, 76], flow simulation [77], metagenome assembly [28, 64], identifying protein fami-
lies [58, 82], analyzing cell networks [5], pattern recognition [32, 40], graph partitioning [50, 51],
random walks [38], social network community detection [46], graph compression [39, 49], medical
imaging [34], and object recognition [33]. It is a starting point for strictly harder problems such
as edge/vertex connectivity, shortest paths, and 𝑘-cores. It is used as a subroutine for pathfind-
ing algorithms such as Djikstra and 𝐴∗, some minimum spanning tree algorithms, and for many
approaches to clustering [25, 26, 67, 81].

The task of computing connected components becomes more difficult when graphs are very large,
or when they are dynamic, meaning the edge set changes over time subject to a stream of edge
insertions and deletions. Applications on large graphs include metagenome assembly tasks that
may include hundreds of millions of genes with complex relations [28], and large-scale clustering,
which is a common machine learning challenge [26]. Applications using dynamic graphs include
identifying objects from a video feed rather than a static image [41], or tracking communities
in social networks that change as users add or delete friends [10, 12]. And of course graphs can
be both large and dynamic. Indeed, Sahu et al.’s [72] survey reports that a majority of industry
respondents work with large graphs (> 1 million nodes or > 1 billion edges) and a majority work
with graphs that change over time.

A natural approach to computing the connected components on a large, dynamic graph stream
is to buy enough RAM to store the entire graph. Indeed, dynamic graph stream processing systems
such as Aspen and Terrace [23, 66] can efficently query the connected components of a large graph
subject to a stream of edge insertions and deletions when the graph fits in RAM. However, the
requirement that the graph fit in RAM is prohibitive for most large graphs: for example, a graph
with ten million nodes and an average degree of 1 million, using 2B to encode an edge, would
require 10TB of memory. We show in Section 6 that the Aspen and Terrace graph representations
are significantly larger than this lower bound.

In public graph-data-set repositories, most graphs are smaller than typical single-machine RAM
sizes. As Figure 1 illustrates, nearly all graphs in Network Repository [70] can be stored as an
adjacency list in less than 16GB. This fixed memory budget furthermore implies that graphs with
large numbers of vertices must be sparse. Similarly, the Stanford SNAP graph repository and the
SuiteSparse repository have few graphs larger than 16GB, and graphs with many nodes are always
extremely sparse.

Large, dense graphs, we argue, are absent from graph repositories not because they are unworthy
of study, but because there are few tools to analyze them. To illustrate: dense graphs do appear in
Network Repository [70], but these graphs are never larger than a few GB; moreover, as the graphs’
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Fig. 1. Published graphs have few nodes or are sparse. Each point represents a graph data set from

NetworkRepository. Any point below the dark line indicates a graph that can be represented as an adjacency

list in 16GB of RAM.

vertex count increases, the maximum density decreases such that the densest graphs never require
more than 10 GB. A compelling explanation for the absence of large, dense graphs is selection bias:
interesting dense graphs exist at all scales, but large, dense graphs are discarded as computationally
infeasible and consequently are rarely published or analyzed. Moreover, some large dense graphs
are known to exist as proprietary datasets: for instance, Facebook works with graphs with 40million
nodes and 360 billion edges. These graphs are processed at great cost on large high-performance
clusters, and are consequently not released for general study.[19]

Thus, there is an unmet need for systems that can process dense graphs, especially when those
graphs are larger than available RAM. Existing systems are not designed for large, dense, dynamic
graph streams and instead optimize for other use cases. Aspen and Terrace are optimized for large,
sparse, dynamic graphs that completely fit in RAM, and their performance degrades significantly
on dense graphs and graphs larger than RAM. There is a deep literature on parallel systems for
connected components computation in multicore [29], GPU [6], and distributed settings [14, 44]
but these focus on static graphs which fit in RAM. Many external memory [13] and semi-external
memory [1] systems focus on graphs that are too large for RAM and must be stored on disk, but
none of these systems focus on graphs whose edges can be deleted dynamically.

In this paper, we explore the general problem of connected components on large, dense, dynamic
graphs.We introduceGraphZeppelin, which computes the connected components of graph streams
using a𝑂 (𝑉 /log3 (𝑉 ))-factor less space than an explicit representation of the graph.GraphZeppelin
uses a new ℓ0-sketching data structure that outperforms the state of the art on graph sketching
workloads. Additionally, GraphZeppelin employs node-based buffering strategies that improve
I/O efficiency. These techniques allow GraphZeppelin to scale better than existing systems in
several settings. First, for in-RAM computation, GraphZeppelin’s small size means it can process
larger, denser graphs than Aspen or Terrace: specifically, dense graphs twice as large as Aspen and
at least 40 times larger than Terrace given 64 GB of RAM. Moreover, even if the input graph fits in
RAM on all systems, GraphZeppelin is up to 3.5 times faster than Aspen and 6 times faster than
Terrace on large dense graphs. GraphZeppelin also has comparable query latency to Aspen and
Terrace for sufficiently large or dense graphs. Finally, GraphZeppelin scales to SSD at the cost of a
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29% decrease to ingestion rate, and is more than two orders of magnitude faster than Aspen and
Terrace, which suffer significant performance degradation when scaling out of RAM.

GraphZeppelin employs a new sketch algorithm, overcoming a computational bottleneck of
existing linear sketching techniques in the semi-streaming graph algorithms literature [21]. The
asymptotically best existing streaming connected components algorithm is Ahn et al.’s Stream-
ingCC [3, 62], which has asymptotically low space and update time complexity. StreamingCC
relies on ℓ0-sampling, which it uses to sample edges across arbitrary graph cuts. However, the
best known ℓ0-sampling algorithm suffers from high constant and polylogarithmic factors in its
space and update time, as we show in Section 3. This overhead makes any implementation of the
StreamingCC data structure infeasibly slow and large. GraphZeppelin employs what we call
CubeSketch, a specialized ℓ0-sampling algorithm for sampling edges across graph cuts, to solve
the connected components problem. For large graphs CubeSketch uses 4 times less space than the
best general ℓ0-sampling algorithm and can process updates more than three orders of magnitude
faster.

GraphZeppelin also uses new write-optimized data structures to overcome prohibitive resource
requirements of existing semi-streaming algorithms. Streaming algorithms have had a significant
impact in large part because they require a small (polylogarithmic) amount of RAM. In contrast,
graph semi-streaming algorithms have higher RAM requirements: for most problems on a graph
with𝑉 nodes, sublinear RAM is insufficient to even represent a solution so𝑂 (𝑉polylog(𝑉 )) RAM is
typically assumed. With the large polylog factors, this is often more RAM than is feasible in practice;
see Section 2. We propose the hybrid streaming model, which enjoys the memory advantage of
the streaming model while allowing enough space in external memory to compute on dynamic
graph streams. In this model there is still𝑂 (𝑉polylog(𝑉 )) space available, but only𝑂 (polylog(𝑉 ))
of this space is RAM and the rest is disk, which may only be accessed in𝑂 (polylog(𝑉 ))-size blocks.
The simultaneous challenges in this model are to design algorithms that use small total space but
also have low I/O complexity. While existing graph semi-streaming algorithms use small space,
their heavy reliance on hashing and random access patterns make them slow on disk. We show
that GraphZeppelin is simultaneously a space-optimal in-RAM semi-streaming algorithm and an
I/O efficient external memory algorithm for the connected components problem. We also validate
its performance experimentally, showing that GraphZeppelin can operate on modern consumer
solid-state disk, increasing the scale of dynamic graph streams that it can process while incurring
only a 29% cost to stream ingestion rate.

Results. In this paper we establish the following:

• GraphZeppelin: We present a new high-performance streaming graph-processing system for
computing the connected components of a graph. This system, which we call GraphZeppelin,
uses new linear sketching data structures (CubeSketch, described below) to solve the streaming
connected components problem using only𝑂 (𝑉 log3 (𝑉 )) bits — a𝑂 (𝑉 /log3 (𝑉 ))-factor less space
than any lossless representation of the graph. GraphZeppelin is optimized for massive dense
graphs: GraphZeppelin can process millions of edge updates (both insertions and deletions)
per second, even when the underlying graph is far too large to fit in available RAM. As a result
GraphZeppelin vastly increases the scale of graphs that can be processed.

• CubeSketch: ℓ0-sampling optimized for graph connectivity sketching.We give a new
ℓ0-sampling algorithm, CubeSketch, for vectors of integers mod 2. Given a vector of length 𝑛 and
failure probability 𝛿 , CubeSketch uses𝑂 (log2 (𝑛) log(1/𝛿)) bits of space and𝑂 (log(𝑛) log(1/𝛿))
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average time per update, which is a factor of 𝑂 (log(𝑛)) faster than the best existing ℓ0-sampler
for general vectors [21].
CubeSketch is a key subroutine in GraphZeppelin, where it is used to sample graph edges
across arbitrary cuts as part of connected components computation. Here it is used to sketch
vectors of length

(
𝑉
2
)
= 𝑂 (𝑉 2), where 𝑉 denotes the number of nodes in the graph. We show

experimentally that CubeSketch’s ingestion is more than 3 orders of magnitude faster than the
state-of-the-art ℓ0 sampling algorithm on graph streaming workloads, and its queries are two
orders of magnitude faster.
In addition to the 𝑂 (log(𝑉 ))-factor speedup, several non-asymptotic factors contribute to this
performance improvement as well. First, the existing algorithm’s average update cost is dominated
by𝑂 (log(𝑉 ) log(1/𝛿)) division operations, whileCubeSketch’s average update cost is dominated
by𝑂 (log(1/𝛿)) bitwise XOR operations, which are much faster. In addition, the general algorithm
performs 128-bit arithmetic operations (including division) when processing graphs with more
than 105 nodes, whereasCubeSketch can use standard 64-bit operations to achieve the same error
probability. Finally, both algorithms match the asymptotic space lower bound but CubeSketch
uses roughly 4 times less space than the general algorithm.

• Asymptotic guarantees of GraphZeppelin: space-optimality, I/O efficiency, 𝑂 (log(𝑉 ))
average time per update. GraphZeppelin’s core algorithmmatches the𝑂 (𝑉 log3 (𝑉 ))-bit space
lower bound for the streaming connected components problem, and its average per-update time
cost of 𝑂 (log(𝑉 )) is 𝑂 (log(𝑉 ))) times faster than the best existing algorithm [3]. Additionally,
GraphZeppelin can efficiently ingest stream updates even when its sketch data structure is too
large to fit in RAM: its I/O complexity is 𝑠𝑜𝑟𝑡 (length of stream) +𝑂 (𝑉 /𝐵 log3 (𝑉 ) +𝑉 log∗ (𝑉 ))
and for realistic block sizes it is an I/O-optimal external-memory algorithm [18]. As a result,
given a fixed amount of RAM and disk, GraphZeppelin is capable of efficiently computing the
connected components of larger graphs than existing algorithms in the streaming or external
memory models.

• Empirical achievements of GraphZeppelin: better scaling for in-memory, out-of-

core, and parallel computation, and undetectable failure probability. GraphZeppelin’s
CubeSketch-based design increases the size of input graphs that can be processed, scales well to
persistent memory, and facilitates parallelism in stream ingestion. As a result, GraphZeppelin
can ingest 2-5 million edge updates per second on a single scientific workstation (see Section 6),
both when its data structures reside completely in RAM and also when they reside on fast disk.
As a result of these advantages, GraphZeppelin is faster and more scalable than the state of the
art on large, dense graphs:

– GraphZeppelin handles larger graphs for in-RAM computation. GraphZeppelin’s
space-efficient CubeSketch allows it to process graph streams larger than can be stored
explicitly in a fixed amount of RAM and give it an asymptotic 𝑂 (𝑉 /log3 (𝑉 )) space advantage
over state-of-art systems on dense graphs. Given the polylogarithmic factors and constants, we
need to determine the actual crossover point where GraphZeppelin processes graphs more
compactly than Aspen and Terrace. We show empirically that this crossover point occurs when
the space budget is between 32 and 64 gigabytes. That is, for dense graphs on several hundred
thousand nodes, GraphZeppelin is 40% more compact than Aspen and several times more
compact than Terrace, and this advantage only increases for larger space budgets or input sizes.
Additionally, for dense graph streams on 218 nodes GraphZeppelin ingests updates six times
faster than Terrace and three times as fast as Aspen.
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– GraphZeppelin can use persistent memory to handle even larger graphs. GraphZep-
pelin’s node-based work buffering strategy facilitates out-of-core computation, allowing
GraphZeppelin to use SSD to increase the scale of graph streams it can process while in-
curring a small cost to performance. We show experimentally that GraphZeppelin ingests
updates more than two orders of magnitude faster than Aspen and Terrace when all systems
swap to disk, and that using SSD slows GraphZeppelin stream ingestion by only 29%.

– GraphZeppelin’s stream ingestion is highly parallel. GraphZeppelin employs a node-
based work buffering strategy that facilitates parallelism and improves data locality. We show
experimentally that GraphZeppelin’s multithreaded stream ingestion system scales well
with more threads: its ingestion rate is 25 times higher with 46 threads than an optimized
single-thread implementation.

2 PRELIMINARIES

2.1 Graph Streaming & Hybrid Graph Streaming

In the graph semi-streaming model [27, 61] (sometimes just called the graph streaming model),
an algorithm is presented with a stream 𝑆 of updates (each an edge insertion or deletion) where
the length of the stream is 𝑁 . Stream 𝑆 defines an input graph G = (V, E) with 𝑉 = |V| and
𝐸 = |E |. The challenge in this model is to compute (perhaps approximately) some property of
G given a single pass over 𝑆 and at most 𝑂 (𝑉polylog(𝑉 )) words of memory. Each update has
the form ((𝑢, 𝑣),Δ) where 𝑢, 𝑣 ∈ E, 𝑢 ≠ 𝑣 and Δ ∈ {−1, 1} where 1 indicates an edge insertion
and −1 indicates an edge deletion. Let 𝑠𝑖 denote the 𝑖th element of 𝑆 , and let 𝑆𝑖 denote the first 𝑖
elements of 𝑆 . Let E𝑖 be the edge set defined by 𝑆𝑖 , i.e., those edges which have been inserted and
not subsequently deleted by step 𝑖 . The stream may only insert edge 𝑒 at time 𝑖 if 𝑒 ∉ E𝑖−1, and
may only delete edge 𝑒 at time 𝑖 if 𝑒 ∈ E𝑖−1.
In Section 4 we additionally use a new variant of the graph semi-streaming model, which we

call the hybrid graph streaming model (since it incorporates some components of the external
memory model [78] into the semi-streaming model). In this model, there is an additional constraint
on the type of memory available for computation: only 𝑀 = Ω(polylog(𝑉 )) = 𝑜 (𝑉 ) RAM is
available, and 𝐷 = 𝑂 (𝑉polylog(𝑉 )) disk space is available. A word in RAM is accessed at unit cost,
and disk is accessed in blocks of 𝐵 = 𝑜 (𝑀) words at a cost of 𝐵 per access. Any semi-streaming
algorithm can be run with this additional constraint, but may become much slower if the algorithm
makes many random accesses to disk. The algorithmic challenge in the hybrid graph streaming
model is to minimize time complexity (of ingesting stream updates and returning solutions) in
addition to satisfying the typical limited-space requirement of the data stream model. In Section 4
we show how GraphZeppelin can be adapted to this model, and is both a space-optimal single pass
streaming algorithm with 𝑂 (log2 (𝑉 )) update time and an I/O efficient external memory algorithm.

We now summarize the streaming connected components problem studied in [3]:

Problem 1 (The streaming connected components problem.). Given a insert/delete edge stream
of length 𝑁 that defines a graph G = (V, E), return the sets of vertices that define the connected
components of G.

In Section 4 we present an improved algorithm for the above problem and analyze its performance
in the hybrid graph streaming model. The algorithms for the connected components problem that
we study in this paper are probabilistic and guarantee that the connected components they return
are exactly correct with high probability.
The above models and problem definition assume that there is a single connected components

query, which is issued at the end of the entire stream of edge updates. Dynamic graph processing
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systems ideally support answering queries interspersed with graph updates. In Section 5 we present
a streaming graph processing system which is based on our improved algorithm but supports
arbitrarily interspersed queries and edge updates. In this paper we assume a non-adaptive adversary
generating the input stream, that is, edge updates cannot be a function of the answers to prior
queries.

2.2 Prior Work in Streaming Connected Components

We summarize StreamingCC, Ahn et al.’s [3] semi-streaming algorithm for computing a spanning
forest (and therefore the connected components) of a graph.
For each node 𝑣𝑖 in 𝐺 , define the characteristic vector 𝑓𝑖 of 𝑣𝑖 to be a 1-dimensional vector

indexed by the set of possible edges in G. 𝑓𝑖 [( 𝑗, 𝑘)] is only nonzero when 𝑖 = 𝑗 or 𝑖 = 𝑘 and edge
( 𝑗, 𝑘) ∈ E. That is, 𝑓𝑖 ∈ {−1, 0, 1}(

𝑉
2 ) s.t. for all 0 ≤ 𝑗 < 𝑘 <

(
𝑉
2
)
:

𝑓𝑖 [( 𝑗, 𝑘)] =


1 𝑖 = 𝑗 and (𝑣 𝑗 , 𝑣𝑘 ) ∈ E
−1 𝑖 = 𝑘 and (𝑣 𝑗 , 𝑣𝑘 ) ∈ E
0 otherwise


Crucially, for any 𝑆 ⊂ V , the sum of the characteristic vectors of the nodes in 𝑆 is a direct

encoding of the edges across the cut (𝑆,V \ 𝑆). That is, let 𝑥 =
∑

𝑣∈𝑆 𝑓𝑣 and then |𝑥 [( 𝑗, 𝑘)] | = 1 iff
( 𝑗, 𝑘) ∈ 𝐸 (𝑆,V \ 𝑆).
Using these vectors, we immediately have a (very inefficient) algorithm for computing the

connected components from a stream: Initialize 𝑓𝑖 = {0}(𝑉2 ) for all 𝑖 . For each stream update
𝑠 = ((𝑢, 𝑣),Δ), set 𝑓𝑢 [𝑢, 𝑣]+ = Δ and 𝑓𝑣 [𝑢, 𝑣]+ = −Δ.

After the stream, run Boruvka’s algorithm [63] for finding a spanning forest as follows. For the
first round of the algorithm, from each 𝑎𝑖 arbitrarily choose one nonzero entry (𝑤,𝑦) (an edge in E
s.t. w = i or y = i). Add 𝑒𝑖 to the spanning forest. For each connected component 𝐶 in the spanning
forest, compute the characteristic vector of 𝐶: 𝑎𝐶 =

∑
𝑣∈𝐶 𝑓𝑣 . Proceed similarly for the remaining

rounds of Boruvka’s algorithm: in each round, choose one nonzero entry from the characteristic
vector of each connected component and add the corresponding edges to the spanning forest. Sum
the characteristic vectors of the component nodes of the connected components in the spanning
forest, and continue until no new merges are possible. This will take at most 𝑂 (log(𝑉 )) rounds.

The key idea to make this a small-space algorithm is to use “ℓ0-sampling” [21] to run this version
of Boruvka’s algorithm by compressing each characteristic vector 𝑓𝑖 into a data structure of size
𝑂 (log2 (𝑉 )) that can return a nonzero entry of 𝑓𝑖 with constant probability.

Definition 1. A sketch algorithm is a 𝛿 ℓ0-sampler if it is
(1) Sampleable: it can take as its input a stream of updates to the coordinates of a non-zero vector

𝑎, and output a non-zero coordinate ( 𝑗, 𝑓 [ 𝑗]) of 𝑓 . S(𝑓 ) denotes the sketch of vector 𝑓 .
(2) Linear: for any vectors 𝑓 and 𝑔, S(𝑓 ) + S(𝑔) = S(𝑓 + 𝑔) and this operation preserves sam-

pleability, i.e., S(𝑓 + 𝑔) can output a nonzero coordinate of vector 𝑓 + 𝑔.
(3) Low Failure Probability: The algorithm may fail by either not returning an answer (a null

answer) or returning an incorrect value for a coordinate of 𝑓 (an incorrect answer). The algorithm
may give a null answer with probability at most 𝛿 . The algorithm may give an incorrect answer
with probability at most 1/𝑉 𝑐 for some constant 𝑐 .

For all ℓ0-samplers in this paper, S(𝑓 ) is a vector and adding two sketches is equivalent to adding
their vectors elementwise.

Lemma 1. (Adapted from [21], Theorem 1): Given a 2-wise independent hash family F and an input
vector of length 𝑛, there is an 𝛿 ℓ0-sampler using 𝑂 (log2 (𝑛) log(1/𝛿)) bits of space.
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We denote a ℓ0 sketch of a vector 𝑥 as S(𝑥). Since the sketch is linear, S(𝑥) + S(𝑦) = S(𝑥 + 𝑦)
for any vectors 𝑥 and 𝑦. This allows us to process stream updates as follows: we maintain a running
sum of the sketches of each stream update, which is equivalent to a sketch of the vector defined by
the stream. That is, let 𝑎𝑡𝑖 denote 𝑎𝑖 after stream prefix 𝑆𝑡 . For the 𝑗th stream update 𝑠 𝑗 = ((𝑖, 𝑥),Δ)
we obtain S(𝑓 𝑗

𝑖
) = S(𝑠 𝑗 ) + S(𝑓 𝑗−1

𝑖
).

Linearity also allows us to emulate the merging step of Boruvka’s algorithm by summing the
sketches of all nodes in each connected component. We require an independent ℓ0-sampler for each
𝑣 ∈ V and each of the 𝑂 (log(𝑉 ) rounds of Boruvka. For each of these ℓ0-samplers we set 𝛿 = 1/3,
so each ℓ0-sampler is 𝑂 (log2 (𝑉 ) bits (From Lemma 1). We refer to the 𝑂 (log𝑉 ) ℓ0-sampler data
structures for a single 𝑣 ∈ V as a node sketch. As there are 𝑂 (𝑉 ) node sketches, the total size of
the entire data structure is 𝑂 (𝑉 log3 (𝑉 )). Recent work [62] has shown that this is asymptotically
optimal.

The above description assumes that the exact number of nodes 𝑉 is known a priori. This is not
strictly necessary: All we need is a loose upper bound on the number of nodes we will eventually
see. Given an upper bound 𝑈 s.t. 𝑉 ≤ 𝑈 ≤ 𝑉 𝑐 for some constant 𝑐 , we can simply define 𝑓𝑖 to have
length

(
𝑈
2
)
. The node sketch of 𝑓𝑖 then has size𝑂 (log3 (𝑈 2)) = 𝑂 (log3 (𝑉 )). We create a node sketch

for 𝑣𝑖 the first time it appears in a stream update (𝑣𝑖 , 𝑣 𝑗 ) so the total space cost is still𝑂 (𝑉 log3 (𝑉 )).
Similarly, even if nodes are identified in the input stream as arbitrary strings instead of integer IDs
in the range [𝑉 ], we can use a hash function with range [𝑂 (𝑈 2)] to ensure that every node gets a
unique integer ID with high probability.

3 ℓ0-SAMPLING REVISITED

Existing ℓ0-sampling algorithms are asymptotically small and fast to update, but in practice high
constant and logarithmic overheads in size and update time prevent these algorithms from being
useful for a streaming connected components algorithm. We now review some details of the best
known ℓ0-sampling algorithm and demonstrate experimentally that using it to emulate Boruvka’s
algorithm for graph connectivity would be prohibitively slow and would require an enormous
amount of space. Then we introduce an ℓ0-sketching algorithm which exploits the structure of the
connected components problem to improve performance, and experimentally demonstrate that it
is 4 times smaller and 3 orders of magnitude faster to update than the state of the art.
The best known ℓ0-sampling algorithm [21] is summarized in Figure 3. Given a vector 𝑓 ∈ Z𝑛 ,

the data structure consists of a matrix of log(𝑛) by 𝑞 log(1/𝛿) "buckets" (for some small constant
𝑞). Each bucket represents the values at a random subset of positions of 𝑓 . This representation is
lossy: we can recover a nonzero element of 𝑓 from bucket B𝑖, 𝑗 only when a single position in B𝑖, 𝑗
is nonzero. Equivalently, the support of B𝑖, 𝑗 , denoted by 𝑠𝑢𝑝𝑝 (B𝑖, 𝑗 ), is 1. If 𝑠𝑢𝑝𝑝 (B𝑖, 𝑗 ) = 1, we say
that B𝑖, 𝑗 is good, and say that it is bad otherwise. With probability 1 − 𝛿 , ∃𝑖, 𝑗 s.t. B𝑖, 𝑗 is good and
therefore we can recover a nonzero value from 𝑓 . Each bucket includes a checksum that indicates
whether it is good with high probability.

Each bucket B𝑖, 𝑗 contains three values: 𝑎𝑖, 𝑗 , 𝑏𝑖, 𝑗 , and 𝑐𝑖, 𝑗 . If B𝑖, 𝑗 is good, then the checksum test
on line 15 passes and 𝑓 [𝑏𝑖, 𝑗 ] = 𝑎𝑖, 𝑗/𝑏𝑖, 𝑗 . If the checksum test fails B𝑖, 𝑗 is bad.
When a stream update (𝑒,Δ) arrives, its membership in each bucket is determined using the

hash function on line 3: if ℎ𝑎𝑠ℎ(𝑒) ≡ 0 (mod 2𝑖 ) then 𝑒 is in B𝑖, 𝑗 . If it is in bucket B𝑖, 𝑗 , it is applied
to 𝑎𝑖, 𝑗 , 𝑏𝑖, 𝑗 , and 𝑐𝑖, 𝑗 according to the logic on lines 7, 8, and 9. When the sketch is queried, it checks
whether each bucket passes the checksum test on line 15. If some bucket passes this test, its sampled
value is returned. Figure 2 gives an example of this process. For a more thorough analysis of this
algorithm see [21].
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Fig. 2. Compressing a characteristic vector. Each highlighted cell contains one nonzero element from the

vector and can be sampled, yielding an edge incident to node 1.

1: function update_sketch(idx, Δ) ⊲ Add Δ to vector index ‘idx’
2: for all col ∈ [0, 𝑞 log(1/𝛿)) do
3: col_hash← hash(col, idx)
4: row← 0
5: checksum← 𝑟 [col]idx mod 𝑝

6: while row == 0 OR col_hash[row-1] == 0 do
7: col[row].a← col[row].a + idx × Δ
8: col[row].b← col[row].b + Δ
9: col[row].c← col[row].c + Δ × checksum
10: row← row + 1
11: functionqery_sketch( ) ⊲ Get a non-zero vector index
12: for all col ∈ [0, 𝑞 log(1/𝛿)) do
13: for all bucket ∈ col do
14: value← bucket.a/bucket.b
15: if value is integer AND bucket.c == bucket.b × 𝑟 [col]value mod 𝑝 then

16: return {value, bucket.b} ⊲ Found a good bucket, done
17: return sketch_failure ⊲ All buckets bad

Fig. 3. State—of—the—art ℓ0-sampling algorithm.

Existing ℓ0-samplers are slow to update for graph streaming workloads. Note in line 9 of
Figure 3 that updating 𝑐𝑖, 𝑗 of bucket B𝑖, 𝑗 requires modular exponentiation (computed on line 5),
necessitating 𝑂 (log(𝑛)) multiplication operations and 𝑂 (log(𝑛)) modulo operations (where the
modulus is a large prime). As a result, in the worst case this algorithm performs𝑂 (log(𝑛) log(1/𝛿))
arithmetic operations per stream update. In the average case, the update modifies only𝑂 (log(1/𝛿))
buckets, however, the cost to generate checksums is still 𝑂 (log(𝑛) log(1/𝛿)). Moreover, for suffi-
ciently large vectors, this modular exponentiation must be done on integers larger than a 64-bit
machine word, drastically increasing computation time in practice.

The “Standard ℓ0” column of Figure 4 displays the single-threaded ingestion rate in updates per
second of the state-of-the-art ℓ0-sampling algorithm for vectors of various sizes. These results were
obtained on a Dell Precision 7820 with 24-core 2-way hyperthreaded Intel(R) Xeon(R) Gold 5220R

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



Vector Length Standard ℓ0 CubeSketch Speedup
1e3 2.2e+5 7.3e+6 33×
1e4 1.2e+5 5.1e+6 42×
1e5 5.4e+4 4.3e+6 80×
1e6 2.9e+4 3.7e+6 130×
1e7 2.0e+4 3.1e+6 150×
1e8 1.6e+4 2.8e+6 170×
1e9 1.3e+4 2.5e+6 200×
1e10 1.3e+3 2.2e+6 1700×
1e11 920 2.1e+6 2300×
1e12 830 1.9e+6 2300×

Fig. 4. CubeSketch is faster than standard ℓ0 sketching. Ingestion rates (in updates/second) are listed for

both ℓ0 sketching methods.

Vector Length Standard ℓ0 CubeSketch Size Reduction
1e+3 2.30KiB 1.21KiB 1.9×
1e+4 4.98KiB 2.34KiB 2.1×
1e+5 7.23KiB 3.43KiB 2.1×
1e+6 9.90KiB 4.73KiB 2.1×
1e+7 14.1KiB 6.79KiB 2.1×
1e+8 17.8KiB 8.58KiB 2.1×
1e+9 21.9KiB 10.6KiB 2.1×
1e+10 55.9KiB 13.6KiB 4.1×
1e+11 66.0KiB 16.1KiB 4.1×
1e+12 77.0KiB 18.8KiB 4.1×

Fig. 5. CubeSketch is significantly smaller than standard ℓ0 sketching. Sizes are listed for both ℓ0 sketching
methods.

CPU @ 2.20GHz and 64GB 4x16GB DDR4 2933MHz RDIMM ECC Memory. Note how ingestion
rate decreases as vector length increases, and in particular there is a catastrophic slowdown at
vector length 1010. This dramatic decrease in ingestion rate is due to the need to perform modular
exponentiation on integers larger than 264, requiring the use of 128-bit integers thus slowing
computation. When sketching characteristic vectors of length 𝑂 (𝑉 2) for streaming connected
components, 128-bit integers are required when 𝑉 ≥ 105.

When using ℓ0-sampling for Boruvka emulation, each stream update ((𝑢, 𝑣),Δ) must be applied to
the node sketches of 𝑢 and 𝑣 . For any node 𝑢, the node sketch of 𝑢 is made up of log(𝑉 ) ℓ0-sketches
of 𝑎𝑢 . Each of these ℓ0-sketches has a failure rate of 𝛿 = 1/100 and, therefore, a width of log(1/𝛿) = 7.
Processing a stream update requires 2 ·7 ·𝑂 (log2 ( |𝑎𝑢 |) = 28 ·𝑂 (log2 (𝑉 )) multiplication and modulo
operations. For a graph with a million nodes, StreamingCC must apply each update to 28 sketch
vectors of length 1012, so it can process roughly 800/28 = 29 edge updates per second.

Existing ℓ0-samplers are large for graph streaming workloads. Each node sketch consists of
log(𝑉 ) ℓ0 sketches and each ℓ0-sketch is a vector of 7𝑐 log(𝑉 2) = 14𝑐 log(𝑉 ) buckets. Each bucket is
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Standard ℓ0 CubeSketch
Vector Length Mean St.Dev. Mean St.Dev. Speedup

2e+4 1.4e+6 1.7e+6 1.1e+7 6.8e+6 7.9×
1e+5 7.4e+5 2.1e+5 1.4e+7 5.9e+6 18×
1e+6 5.4e+5 1.2e+5 6.9e+6 2.4e+6 13×
1e+7 4.7e+5 1.0e+5 1.3e+7 5.2e+6 28×
1e+8 3.4e+5 1.1e+5 1.5e+7 4.9e+6 44×
1e+9 3.3e+5 8.1e+4 1.1e+7 5.3e+6 33×
1e+10 6.6e+4 2.1e+4 1.1e+7 5.7e+6 170×
1e+11 4.5e+4 1.1e+4 1.2e+7 5.5e+6 270×
1e+12 3.8e+4 1.2e+4 1.2e+7 6.1e+6 320×

Fig. 6. CubeSketch answers queries faster than standard ℓ0 sketching. Query speeds (in queries/second) are

listed for both ℓ0 sketching methods.

composed of three integers so a node sketch consists of 42𝑐 log2 (𝑉 ) integers. As noted above, 128-
bit(16B) integers are necessary when𝑉 ≥ 105, so for 𝑐 = 2 the size of a node sketch is 1344 log2 (𝑉 )B.
Since there is a node sketch for each node in the graph, the entire streaming data structure has size
1344𝑉 log2 (𝑉 )B. When 𝑉 = 1 million, this data structure is roughly 500 GiB in size.

Existing ℓ0-samplers are slow to query for graph streaming workloads. Querying an ℓ0
sketch requires performing a modular exponentiation, at a cost of 𝑂 (log(𝑛)) multiplications, for
each bucket. Figure 6 shows that, for a vector of length 1012 (corresponding to a graph with 1
million nodes), a ℓ0 sketch query takes 1/38000 of a second or 26 microseconds. The first Boruvka
round of a connectivity query for a graph on 1 million nodes requires querying 1 million ℓ0 sketch
sketches, which takes 1e+6/38000 > 26 seconds, in addition to the cost of merging the sketches. A
system operating under these parameters would be limited to at most 2 queries per minute. A user
that wants to make frequent connectivity queries on a high-speed graph stream would find this
lower bound on query latency prohibitively high.

Using existing ℓ0-samplers offers no advantage onmodern hardware. The goal of a streaming
connected components algorithm is to use smaller space than would be required to store the entire
graph explicitly. As we demonstrate empirically in Section 6, the most space-efficient dynamic
graph processing system, Aspen, requires roughly 4B of space for each edge in the graph. A
straightforward back-of-the-envelope calculation reveals that even for dense graphs with average
degree 𝑉 /2, StreamingCC would use less space than Aspen only on very large inputs which
require enormous RAM capacities and decades of processing time: 1344𝑉 log2 (𝑉 )B ≤ 4𝐵 · 𝑉 2/4
only when 𝑉 ≥ 5 · 105. Processing a half a million-node graph using StreamingCC would require
220 GB of RAM and, at an ingestion rate of less than 35 edges per second, would take more than 56
years to process the graph’s roughly 64 billion edges. While StreamingCC’s space complexity is
much smaller than explicit graph representations like Aspen’s asymptotically, in absolute terms it
offers no advantage on modern hardware.

3.1 Improved ℓ0-Sampler for Graph Connectivity

We present CubeSketch, an ℓ0-sampling algorithm for vectors on the integers mod 2, which is
smaller than the best existing general-purpose ℓ0-sampling algorithm and is asymptotically faster
to update. Since addition of characteristic vectors (Section 2.2) can be thought of as addition
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1: function update_sketch(idx) ⊲ Toggle vector index ‘idx’
2: for all col ∈ [0, 𝑞 log(1/𝛿) do
3: col_hash← hash1(col, idx)
4: row← 0
5: checksum← hash2(col, idx)
6: while row == 0 OR col_hash[row-1] == 0 do
7: col[row].𝛼 ← col[row].𝛼 ⊕ idx
8: col[row].𝛾 ← col[row].𝛾 ⊕ checksum
9: row← row + 1
10: functionqery_sketch( ) ⊲ Get a non-zero vector index
11: for all col ∈ [0, 𝑞 log(1/𝛿)) do
12: for all bkt ∈ col do
13: if bkt.𝛾 == hash2(col, bkt.𝛼) then
14: return bkt.𝛼 ⊲ Found a good bucket, done
15: return sketch_failure ⊲ All buckets bad

Fig. 7. Pseudocode for the CubeSketch algorithm.

over vectors ∈ Z2, CubeSketch is sufficient for solving the connected components problem.
Additionally, CubeSketch may be useful for other sketching algorithms for problems such as edge-
or vertex-connectivity, testing bipartiteness, and finding minimum spanning trees and densest
subgraphs [2, 3, 30, 57].
Since CubeSketch’s goal is to recover a nonzero entry from vectors of integers mod 2, it can

use a much simpler bucket data structure than the general-purpose ℓ0-sketch, improving space
and update time costs. The CubeSketch algorithm is summarized in Figure 7. Each bucket B𝑖, 𝑗
maintains 2 values: 𝛼𝑖, 𝑗 , which is used to recover the position of a single nonzero entry, and 𝛾𝑖, 𝑗 ,
which is used as a checksum. 𝛼𝑖, 𝑗 and 𝛾𝑖, 𝑗 are each 𝑂 (log(𝑛)) bits, and therefore require 𝑂 (1)
machine words. Since each vector value is either 0 or 1, Δ = 1 for every stream update (𝑒,Δ), and
so for simplicity we refer to the update as (𝑒).
Function update_sketch() in Figure 7 describes how CubeSketch processes a stream update.

Given update (𝑒), if ℎ1 (𝑒) ≡ 0 (mod 2𝑖 ) then 𝑒 is in B𝑖, 𝑗 . For each such B𝑖, 𝑗 , 𝛼𝑖, 𝑗 = 𝛼𝑖, 𝑗 ⊕ 𝑏𝑖𝑛(𝑒) and
𝛾𝑖, 𝑗 = 𝛾𝑖, 𝑗 ⊕ ℎ2 (𝑏𝑖𝑛(𝑒)) where ⊕ denotes bitwise XOR, 𝑏𝑖𝑛(𝑒𝑤) denotes the binary representation of
𝑒𝑤 , and ℎ1 and ℎ2 are hash functions drawn from a 2-wise independent family of hash functions.
Note that the procedure for determining whether 𝑒 ∈ B𝑖, 𝑗 is identical to the algorithm in Figure 3,
but the procedure for updating B𝑖, 𝑗 is different. Importantly, CubeSketch never performs modular
exponentiation, which as we will show makes it a 𝑙𝑜𝑔(𝑉 ) factor faster than the existing algorithm
in the average case. As a result of update_sketch(), given a sequence of updates (𝑒1), (𝑒2), . . . , (𝑒𝑘 )
to the data structure,

𝛼𝑖, 𝑗 =
⊕
𝑤∈[𝑘 ]

𝑏𝑖𝑛(𝑒𝑤) (1)

𝛾𝑖, 𝑗 =
⊕
𝑤∈[𝑘 ]

ℎ2 (𝑏𝑖𝑛(𝑒𝑤)) (2)
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Function qery_sketch() describes how CubeSketch returns a nonzero entry of the input
vector. For any bucket B𝑖, 𝑗 :

𝑟𝑒𝑠𝑢𝑙𝑡 =


𝑒′ if 𝛼𝑖, 𝑗 = 𝑏𝑖𝑛(𝑒′) and 𝛾𝑖, 𝑗 = ℎ2 (𝑏𝑖𝑛(𝑒′))
FAIL if 𝛼𝑖, 𝑗 = 0 and 𝛾𝑖, 𝑗 = 0 OR

if 𝛾𝑖, 𝑗 ≠ ℎ2 (𝛼𝑖, 𝑗 )
A nonzero entry is recovered from CubeSketch by attempting to recover a nonzero entry from

each B𝑖, 𝑗 until one returns a value other than FAIL. If no such bucket exists, the algorithm returns
NULL.

Theorem 1. CubeSketch is an ℓ0 sampler that, for input vector 𝑥 ∈ Z𝑛2 , has space complexity
𝑂 (log2 (𝑛) log(1/𝛿)), worst-case update complexity 𝑂 (log(𝑛) log(1/𝛿)), average-case update com-
plexity 𝑂 (log(1/𝛿)), and failure probability at most 𝛿 .

Proof. The space and update time results follow by construction: each bucket B𝑖, 𝑗 requires
a constant number of machine words, and 𝑖 ∈ [𝑂 (log(𝑛)]) and 𝑗 ∈ [𝑂 (log(1/𝛿)]. Applying an
update to any bucket B𝑖, 𝑗 requires constant time, and in the worst case, an update will be applied
to each of the 𝑂 (log(𝑛) log(1/𝛿)) buckets. In the average case an update is applied to 𝑂 (log(1/𝛿))
buckets.

Lemma 2. CubeSketch’s selection process succeeds with probability at least 1 − 𝛿 . Equivalently,
CubeSketch contains a bucket B𝑖, 𝑗 with a single nonzero entry, that is, Pr

[
∃𝑖, 𝑗 s.t. 𝑠𝑢𝑝𝑝 (B𝑖, 𝑗 ) = 1

]
≥

1 − 𝛿.
Proof. Adapted from [21]. Choose 𝑖 ∈ [log(𝑛)] such that 2𝑖−2 ≤ ∥𝑥 ∥0 < 2𝑖−1 where ∥𝑥 ∥0

denotes the ℓ0 norm of 𝑥 , i.e., the number of nonzero entries of 𝑥 . Let 𝐴𝑥 be the set of positions
of nonzero entries in 𝑥 . Then, since ℎ1 is drawn from a 2-universal family of hash functions,
∀𝑗 ∈ [6 log(1/𝛿)],

Pr
[
𝑠𝑢𝑝𝑝 (B𝑖, 𝑗 = 1)

]
=

∑︁
𝑘∈𝐴𝑥

1
2𝑖

(
1 − 1

2𝑖

) ∥𝑥 ∥0−1
>
∥𝑥 ∥0
2𝑖

(
1 − ∥𝑥 ∥0

2𝑖

)
> 1/8.

Then Pr
[
𝑠𝑢𝑝𝑝 (B𝑖, 𝑗 ≠ 1)∀𝑗 ∈ [6 log(1/𝛿)]

]
< (1 − 1/8)6 log(1/𝛿 ) = (7/8)6 log7/8 (1/𝛿 )/log7/8 (2) =

𝛿−6/log7/8 (2) < 𝛿 . □

Lemma 3. CubeSketch’s checksum succeeds with high probability. That is, ∀𝑤,𝑦, if 𝑠𝑢𝑝𝑝 (B𝑤,𝑦) = 1
then 𝛾𝑤,𝑦 = ℎ2 (𝛼𝑤,𝑦) and if 𝑠𝑢𝑝𝑝 (B𝑤,𝑦) > 1 then Pr

[
𝛾𝑤,𝑦 ≠ ℎ2 (𝛼𝑤,𝑦)

]
≥ 1 − 1/𝑛𝑐 for some constant

c.

Proof. When B𝑖, 𝑗 has a single nonzero entry, it always passes the error check. That is, if
𝑠𝑢𝑝𝑝 (B𝑖, 𝑗 ) = 1, 𝛼𝑤,𝑦 = 𝑏𝑖𝑛(𝑒𝑖 ) where 𝑒𝑖 is the single nonzero element ofB𝑖, 𝑗 , and𝛾𝑤,𝑦 = ℎ2 (𝑏𝑖𝑛(𝑒𝑖 )).
When B𝑖, 𝑗 has more than one nonzero entry, then it passes the error check only in the rare

event of a hash collision: If 𝑠𝑢𝑝𝑝 (B𝑖, 𝑗 ) > 1, fix 𝑒𝑖 ∈ B𝑖, 𝑗 . By equations (1) and (2), 𝛾𝑤,𝑦 = ℎ2 (𝛼𝑤,𝑦)
iff

⊕
𝑗∈B𝑖,𝑗 \𝑒𝑖 ℎ2 (𝑏𝑖𝑛( 𝑗)) ⊕ ℎ2 (𝑏𝑖𝑛(𝑒𝑖 )) = ℎ2 (𝛼𝑤,𝑦). Since ℎ2 is a 2-wise independent hash function,

assuming that 𝛾𝑖, 𝑗 is 𝑐 log(𝑛) bits:

Pr
ℎ2 (𝑏𝑖𝑛(𝑒𝑖 )) = ©«

⊕
𝑗∈B𝑖,𝑗 \𝑒𝑖

ℎ2 (𝑏𝑖𝑛( 𝑗))
ª®¬ ⊕ ℎ2 (𝛼𝑤,𝑦)

 =
1

2𝑐 log(𝑛)
=

1
𝑛𝑐

.

□
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Lemmas 2 and 3 imply that CubeSketch is sampleable with probability 1 − 𝛿 (see Definition 1).
CubeSketch may be added via elementwise

⊕
(exclusive or). Linearity of CubeSketch follows

from the observation that exclusive or is a linear operation. □

Figure 4 illustrates that CubeSketch is far faster than the standard ℓ0-sampling algorithm. In
fact, when sketching characteristic vectors of graphs with at least 105 nodes, it is more than 3
orders of magnitude faster. This dramatic speedup is a result both of CubeSketch’s asymptotically
lower update time complexity, and the fact that its update cost is dominated by bitwise exclusive
OR operations, which are in practice much faster than the division operations standard ℓ0-sampling
performs. Similarly, CubeSketch’s query operations require computing one hash per bucket, which
is fast in practice. Finally, standard ℓ0 sampling is slowed significantly by the need to perform
𝑂 (log(𝑉 ) log(1/𝛿) modular exponentiation operations on 128-bit integers for each update when
𝑉 ≥ 105. CubeSketch does not require 128-bit operations until processing graphs with tens of
billions of nodes.
Figure 5 shows that, for the same input vector length and failure probability, CubeSketch is

twice as small as standard ℓ0 sampling for smaller vectors, and four times smaller for larger vectors.
This is a result of the fact that CubeSketch’s bucket data structures use half the machine words
of standard ℓ0 sampling, and the fact that CubeSketch does not need to use 128-bit integers for
longer vectors.
Querying CubeSketch is up to 320 times faster than standard ℓ0 sketching due in part to

eliminating modular exponentiation and requiring only 64 bit machine words (as for ingestion
above). Per Figure 6, on a million-node graph CubeSketch performs 12 million queries per second
or only 83 nanoseconds per query. When performing the first round of a connectivity query on
a graph with 1 million nodes, we query all the sketches which takes only ≈ 83 milliseconds.
This is much faster than the 26 seconds required for the standard ℓ0 sketch as described above.
CubeSketch’s low query latency allows it to quickly answer queries, even on large datasets. In
Section 6.6 we note that GraphZeppelin’s connectivity query performance depends on both the
underlying sketches’ ingestion and query performance.

4 BUFFERING FOR I/O EFFICIENCY AND IMPROVED PARALLELISM

In the streaming connectivity problem, stream updates are fine-grained: each update represents the
insertion or deletion of a single edge. Since streams are ordered arbitrarily, even a short sequence
of stream updates can be highly non-local, inducing changes throughout the graph. As a result,
StreamingCC and similar graph streaming algorithms do not have good data locality in the worst
case. This lack of locality can cause many CPU cache misses and therefore reduce the ingestion
rate, even when sketches are stored in RAM. The cache-miss cost can be high since ingesting
each stream update (𝑢, 𝑣,Δ) requires modifying a logarithmic number of sketches, and can thus
induce a poly-logarithmic number of cache misses. The consequences are even worse if sketches
are stored on disk since each edge update requires loading a logarithmic number of sketches from
disk, leading to the following observation.

Observation 1. In the hybrid semi-streaming model with 𝑀 = 𝑜 (𝑉 log3 (𝑉 )) RAM and 𝐷 =

Ω(𝑉 log3 (𝑉 )) disk, StreamingCC uses Ω(1) I/Os per update and processing the entire stream of
length 𝑁 uses Ω(𝑁 ) = Ω(𝐸) I/Os.

Any sketching algorithm that scales out of core suffers severe performance degradation unless it
amortizes the per-update overhead of accessing disk. Such an amortization is not straightforward,
since sketching inherently makes use of hashing and as a result induces many random accesses,
which are slow on persistent storage. We now introduce a sketching algorithm for the streaming
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connected components problem that amortizes disk access costs, even on adversarial graph streams,
and as a result is simultaneously a space-efficient graph semi-streaming algorithm and an I/O-
efficient external-memory algorithm. We also note that the design facilitates parallelism, which we
experimentally verify in Section 6.

4.1 I/O-Efficient Stream Ingestion

We describe GraphZeppelin’s I/O efficient stream ingestion procedure in the hybrid streaming
model (see Section 2.1).

Arbitrarily partition the nodes of the graph into node groups of cardinality max{1, 𝐵/log3 (𝑉 )}.
LetU ⊂ V denote a node group, and let S(U) denote the node sketches associated with the nodes
inU. Store S(U) contiguously on disk. This allows S(U) to be read into memory I/O efficiently:
if node groups are of cardinality 1, then 𝐵 is smaller than the size of a node sketch, and if each node
group has cardinality 𝐵/log3 (𝑉 ) > 1, then the sketches for the group have total size 𝑂 (𝐵).
Applying stream update ((𝑢, 𝑣),Δ) to node sketches of 𝑢 and 𝑣 immediately upon arrival takes

Ω(1) I/Os since the corresponding sketches must be read from disk. To amortize the cost of fetching
sketches, GraphZeppelin only fetches S(U𝑖 ) when it has collected max{𝐵, log3 (𝑉 )} updates for
U𝑖 . Since there may be 𝑂 (𝑉 ) node groups, collecting these updates for each node group cannot
be done in RAM. Instead, we collect these updates I/O efficiently on disk using a gutter tree, a
simplified version of a buffer tree [9] which uses 𝑂 (𝑉 (log3 (𝑉 )) space.

Like a buffer tree, a gutter tree consists of a tree whose vertices each have buffers of size 𝑂 (𝑀).
Each non-leaf vertex has 𝑂 (𝑀/𝐵) children. We refer to a leaf vertex of the gutter tree as a gutter ,
because it fills with stream data but is periodically emptied by applying the contained stream data
to sketches. Each leaf vertex in the gutter tree is associated with a node group U and has size
max{𝐵, log3 (𝑉 )}, the same size as S(U). When a gutter for node groupU fills, GraphZeppelin
reads S(U) and the updates stored in the gutter into memory, applies the updates to S(U), and
writes S(U) back to disk. Since data does not persist in leaf vertices, no rebalancing is necessary.

Lemma 4. GraphZeppelin’s stream ingestion uses 𝑂 (𝑉 log3 (𝑉 )) space and 𝑠𝑜𝑟𝑡 (𝑁 ) =

𝑂 (𝑁 /𝐵(log𝑀/𝐵 (𝑉 /𝐵))) I/Os in the hybrid streaming setting.

Proof. GraphZeppelin’s sketch data structures use 𝑂 (𝑉 log3 (𝑉 )) space.
Each leaf in the gutter tree has a gutter of size max{𝐵, log3 (𝑉 )}. This is one gutter for each node

group and there are 𝑉 /(max{1, 𝐵/log3 (𝑉 )}) node groups so the total space for the leaves of the
gutter tree is 𝑂 (𝑉 log3 (𝑉 )).

In the level above the leaves, there are 𝑉 log3 (𝑉 )/𝐵 · 𝐵/𝑀 vertices each with size𝑀 , so the total
space used at this level is 𝑂 (𝑉 log3 (𝑉 )). Each subsequent higher level of the tree uses 𝑂 (𝑀/𝐵)
space less than the level below it, so the total space used for the entire gutter tree is 𝑂 (𝑉 log3 (𝑉 )).
The I/O complexity of the gutter tree is equivalent to that of the buffer tree, except that leaf

gutters are flushed by reading in the appropriate sketches from disk and applying the updates in the
gutter to these sketches. Asymptotically this incurs no additional cost so the total I/O complexity
for ingestion is 𝑠𝑜𝑟𝑡 (𝑁 ). □

4.2 I/O-Efficient Connectivity Computation

Lemma 5. Once all stream updates have been processed, GraphZeppelin computes connected compo-
nents using 𝑂 ((𝑉 log3 (𝑉 )/𝐵) + (𝑉 log∗ (𝑉 )) I/Os in the hybrid streaming model.

Proof. Each round of Boruvka’s algorithm has three phases. In the first, an edge is recovered
from the sketch of each current connected component. In the second, for each edge its endpoints
are merged in a disjoint set union data structure which keeps track of the current connected
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Fig. 8. GraphZeppelin stream ingestion data flow.

components. In the third phase, for each pair of connected components merged in phase 2, the
corresponding sketches are summed together. We analyze the I/O cost of each phase of a round
separately.
In the first round, to query the sketches in the first phase, all of the sketches must be read into

RAM which can be done with a single scan. This uses 𝑂 (𝑉 log3 (𝑉 )/𝐵) I/Os.
The disjoint set union data structure has size 𝑂 (𝑉 ) and must be stored on disk. In the second

phase the cost of each DSU merge is log∗ (𝑉 ) I/Os, because a merge requires a leaf-to-root traversal
of the union find data structure and this leaf-to-root path has length at most log∗ (𝑉 ). In the worst
case each parent resides in a different block from its child so each step of the path requires an I/O.
Since there are at most 𝑉 merges, the total I/O cost is 𝑉 log∗ (𝑉 ).
In the third phase, summing the sketches of the merged components together is I/O efficient if

𝐵 = 𝑂 (log3 (𝑉 )), since the disk reads and writes necessary for summing sketches are the size of a
block or larger. The cost for the third phase is 𝑂 (𝑉 log3 (𝑉 )/𝐵).
If 𝐵 = 𝜔 (log3 (𝑉 )), sketches are much smaller than the block size. Since the merges performed

in each round of Boruvka are a function both of the input stream and of the randomness of the
sketches, these merges induce random accesses to the sketches on disk and so summing the sketches
for each merge takes 𝑂 (1) I/Os. In total, the third phase takes 𝑂 (𝑉 ) I/Os in this case.
Since the number of connected components decreases by at least half in each round, the I/O

cost of each round at at most half the cost of the previous round. Therefore the asymptotic cost of
the entire Boruvka algorithm is the cost of the first round, that is, 𝑂 ((𝑉 log3 (𝑉 )/𝐵) + (𝑉 log∗ (𝑉 ))
I/Os. □

Corollary 1. When 𝐸 = Ω(𝑉 log3 (𝑉 )) and 𝐵 = 𝑜 (log3 (𝑉 )) or 𝑀 = 𝑂 (𝑉 ), GraphZeppelin is I/O
optimal for the connected components problem; i.e., it uses 𝑠𝑜𝑟𝑡 (𝐸) = 𝑂 (𝐸/𝐵(log𝑀/𝐵 (𝑉 /𝐵))) I/Os.

Note that for optimality the graph cannot be too sparse. In practice, for some graph streams
𝑀 = 𝑂 (𝑉𝐵) and 𝐷 = 𝑂 (𝑉 log3 (𝑉 )). In this case, we can omit the upper levels of the gutter tree and
write I/O efficiently to the leaf gutters stored on disk. In Section 5 we describe how GraphZeppelin
can perform stream ingestion using either a full gutter tree or just the leaf gutters, and evaluate the
performance of both approaches in Section 6.

5 SYSTEM DESCRIPTION

The GraphZeppelin algorithm is split into two components: stream ingestion, in which edge
updates are processed and stored using CubeSketch, and query-processing, in which a spanning
forest for the graph is recovered from these sketches. These components use SSD when the sketches
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1: function edge_update(edge← {u, v}) ⊲ Write edge update to buffers
2: buffer_insert({u, v})
3: buffer_insert({v, u})
4: function do_batch_update( ) ⊲ Apply batched updates to supernode
5: {batch, node}← get_batch( )
6: for all sketch ∈ supernodes[node] do
7: update_sketch_batch(sketch, batch)
8: function update_sketch_batch(sketch, batch)
9: for all update ∈ batch do

10: sketch.update_sketch(update)

Fig. 9. Pseudocode for GraphZeppelin’s core stream ingestion routines. edge_update() is part of the user

API, while do_batch_update(), and update_sketch_batch() are internal functions.

1: function edge_update(edge← {u, v}) ⊲ Write edge update to buffers
2: buffer_insert({u, v})
3: buffer_insert({v, u})
4: function do_batch_update( ) ⊲ Apply batched updates to supernode
5: {batch, node}← get_batch( )
6: for all sketch ∈ supernodes[node] do
7: update_sketch_batch(sketch, batch)
8: function update_sketch_batch(sketch, batch)
9: for all update ∈ batch do

10: sketch.update_sketch(update)

Fig. 10. Pseudocode for GraphZeppelin’s core post-processing routines. list_spanning_forest() is part of

the user API, while cleanup() is an internal function.

are so large that they do not fit in RAM. Their implementations are parallel for better performance
on multi-core systems.
GraphZeppelin’s user-facing API consists of edge_update() for processing stream updates,

and list_spanning_forest() to compute and return the connected components. On initialization
GraphZeppelin allocates log(𝑉 ) CubeSketch data structures for each node in the graph, for a
total sketch size of approximately 280𝑉 · log2 (𝑉 ) bytes. It also initializes its buffering data structure.

5.1 Stream Ingestion

Each update in the input stream is immediately placed into a buffering system. Periodically, the
buffering system produces a batch of updates bound for the same graph node 𝑢. This batch is
inserted into a work queue, which then hands the batch off to a Graph Worker , i.e., a thread
for carrying out batched sketch updating. Because each batch is only applied to a single node
sketch, and because each of the log(𝑉 ) CubeSketches in a node sketch can be updated in parallel,
many Graph Workers can operate in parallel without contention (see Section 5.1). A high-level
illustration and pseudo code of GraphZeppelin stream ingestion are shown in Figure 8 and Figure 9
respectively.

Buffering. GraphZeppelin’s buffering system ingests updates from the stream and periodically
outputs a batch of updates for a single node in the graph. GraphZeppelin implements two buffering
data structures: a gutter tree, described in Section 4, and a simplified version of the gutter tree,
which only includes the leaves. Depending upon available memory, GraphZeppelin uses only one
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of these two buffering structures at any time. The leaf-only version is fundamentally a special case
gutter tree used when sufficient memory is available (𝑀 > 𝑉 · 𝐵) and is optimized for this case.

These buffering techniques confer several benefits. First, when GraphZeppelin’s sketches are so
large that they do not fit in RAM and are stored on SSD, applying updates to a single node sketch
in large batches amortizes the I/O cost of reading the node sketch into memory. Without buffering,
each stream update would incur Ω(1) I/Os in the worst case. We demonstrate in Section 6.4 that
buffering facilitates I/O efficiency and parallelism.
Gutter tree. GraphZeppelin allocates 8MB for each non-leaf buffer in the gutter tree. The gutter tree
writes updates to the disk in blocks of 16KB, and has a fan-out of 8MB

16KB = 512. A write block of 16KB
is an efficient I/O granularity for SSDs and a buffer size of 8MB balances buffering performance
with the latency of flushing updates through the gutter tree. When𝑉 > 5 · 104, the size of a sketch
is greater than 100KB, much larger than the 16KB block. Therefore, the leaf nodes of the gutter tree
accumulate updates for a single graph node. GraphZeppelin allocates space for each leaf gutter
equal to twice the size of a node sketch.
When we initialize GraphZeppelin, we leverage the static structure of the gutter tree to pre-

allocate its disk space. A call to buffer_insert({𝑢, 𝑣}) inserts {𝑢, 𝑣} to the root buffer of the gutter
tree. Another thread asynchronously flushes the contents of full buffers to the appropriate child
using the pwrite system call. When a flush causes the buffer of a child node to fill, that child
node is recursively flushed before the flush of the parent continues. When a leaf gutter is full
this thread moves the batch of updates into the work queue for processing by Graph Workers in
do_batch_update().
Leaf-only gutter tree. For each graph node 𝑢 we maintain a gutter that accumulates updates for 𝑢.
When the system is initialized, we allocate the memory for each of these gutters. By default, each
leaf gutter is 1/2 the size of a node sketch. This choice balances RAM usage with I/O efficiency as
shown in Section 6.4. buffer_insert((𝑢, 𝑣)) inserts edge 𝑒 = (𝑢, 𝑣) directly into the gutter for node
𝑢. As before, when the gutter becomes full, it is flushed and the batch is inserted into the work
queue. Note that the leaf-only gutter data structure need not fit entirely in RAM, so long as at least
a page of memory is available per buffer the rest can be efficiently swapped to SSD; see Section 6.

Work queue. The work queue functions as a simple solution for the producer-consumer problem,
in which the thread filling buffers produces work and the Graph Workers consume it. Once a buffer
is filled the buffer_insert() function inserts the batch of updates into the work queue. Later a
Graph Worker removes the batch from the front of the queue in do_batch_update().

Insertions to the queue are blocked while the queue is full, and Graph Workers in need of work
are blocked while the queue is empty. The work queue can hold up to 8𝑔 batches, where 𝑔 is
the number of Graph Workers. A moderate work queue capacity of 8𝑔 limits the time either the
buffering system or graph workers spend waiting on the queue, even when batch creation is volatile,
while keeping the memory usage of the work queue low.

Sketch updates. In each call to do_batch_update(), Graph Workers call get_batch() to receive
a batch of updates bound for a particular node 𝑢 from the work queue. The Graph Worker then
uses update_sketch_batch(sketch𝑢 , batch) to update each of the 𝑂 (log(𝑉 )) CubeSketches in
the node sketch of 𝑢.

As described in Section 3.1, a CubeSketch is a vector of buckets, each of which consists of a 64
bit 𝛼 value and a 32 bit 𝛾 value. Each CubeSketch stores a two dimensional array 𝐴 of buckets B𝑖, 𝑗 ,
with dimensions log(𝑉 2) × (log(1/𝛿) = 7). To apply an update (𝑒 = {𝑢, 𝑣}) to a CubeSketch, the
GraphWorker determines which bucketsB𝑖, 𝑗 contain 𝑒 , and sets 𝛼𝑖, 𝑗 := 𝛼𝑖, 𝑗 ⊕𝑒 and𝛾𝑖, 𝑗 := 𝛾𝑖, 𝑗 ⊕ℎ𝑦 (𝑒).
The hash values are calculated using xxHash [20].
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Each CubeSketch data structure uses 7 log(𝑉 2) = 14 log(𝑉 ) 12B buckets. In total, this is
168 log(𝑉 ) bytes per CubeSketch, and 168 log(𝑉 ) log3/2 (𝑉 ) bytes per node sketch.

Multithreading sketch updates.
Applying a batch to a node sketch in do_batch_update() is handled asynchronously by a Graph

Worker, allowing what we call batch-level parallelism. We implement these workers using C++
STL threads.
We use OpenMP [65] to dispatch a group of threads to process each CubeSketch update in

update_sketch_batch(). We refer to this as sketch-level parallelism. OpenMP allows us to specify
the number of threads to allocate to a task and handles work allocation transparently. When
updating a node sketch, applying a batch to each CubeSketch is treated as one work unit and
OpenMP allocates the log(𝑉 ) units between the apportioned threads.

Implementing both batch- and sketch-level parallelism gives us a natural way to tune GraphZep-
pelin’s performance. For instance, we can decide to configure more Graph Workers with fewer
threads per group, or fewer Graph Workers with more threads per group. We experimentally
determine a good configuration for our hardware and datasets (see Section 6.4).

A single work unit is never shared between threads in the same group. As a result, a CubeSketch
is only modified by one thread in a group, so no locking is necessary at the sketch level. However,
locking is necessary at the batch level because consecutive batch updates may be requested to the
same node sketch, and thus multiple graph workers may seek to dispatch thread groups to the same
sub-sketches. We minimize the size of this critical section by exploiting linearity of ℓ0-samplers.
Rather than locking a node sketch 𝑆 (𝑥) for the entire batch operation, we apply the updates to an
empty sketch 𝑆 (𝑥0) and lock only to add 𝑆 (𝑥) = 𝑆 (𝑥) + 𝑆 (𝑥0).

5.2 Query Processing

When a connectivity query is issued, GraphZeppelin calls list_spanning_forest() which returns
a spanning forest of the graph. The first step of post-processing is to flush the buffering data
structure of any remaining updates, moving the batches to the work queue in cleanup(). We
then wait for the Graph Workers to finish processing these batches. Finally, GraphZeppelin runs
Boruvka’s algorithm to generate a spanning forest of the input graph.

6 EVALUATION

Experimental setup. We implemented GraphZeppelin as a C++14 executable compiled with
g++ version 9.3 for Ubuntu. All experiments were run on a Dell Precision 7820 with 24-core 2-
way hyperthreaded Intel(R) Xeon(R) Gold 5220R CPU @ 2.20GHz, 64GB 4x16GB DDR4 2933MHz
RDIMM ECC Memory and two 1 TB Samsung 870 EVO SSDs. In some of our experiments we
artificially limited RAM to force systems to page to disk using Linux Control Groups. We put a
swap partition and the gutter tree data on one of the two SSDs, and the other SSD held the datasets.

6.1 Datasets

We used two types of data sets in this paper. First, we generated large, dense graphs using a
Graph500 specification, and converted these to streams for our evaluation. We also evaluated
correctness on graphs from the SNAP graph repository [48] and the Network Repository [70]. All
data sets used are described in Table 11.

Synthesizing Dense Graphs and Streams We created undirected graphs using the Graph500 Kro-
necker generator. We produced five simple, undirected graphs. These graphs are dense: each has
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Name # of Nodes # of Edges # Stream Updates # Connected Components
kron13 213 1.7e+7 1.8e+7 26
kron15 215 2.7e+8 2.8e+8 51
kron16 216 1.1e+9 1.2e+9 76
kron17 217 4.3e+9 4.5e+9 101
kron18 218 1.7e+10 1.8e+10 126

p2p-gnutella 6.3e+4 1.5e+5 2.9e+5 12
rec-amazon 9.2e+4 1.3e+5 2.5e+5 2
google-plus 1.1e+5 1.4e+7 2.7e+7 4
web-uk 1.3e+5 1.2e+7 2.3e+7 2

Fig. 11. Dimensions of datasets used in this evaluation.

roughly one half of all possible edges. The Graph500 generator does not output simple graphs by
default, so to produce our five simple graphs we pruned duplicate edges and self-loops [8].

We then transformed each of the 5 graphs into a random stream of edge insertions and deletions
with the following guarantees: (i) an insertion of edge 𝑒 always occurs before a deletion of 𝑒 , (ii) an
edge never receives two consecutive updates of the same type, (iii) we disconnect a small (fewer
than 150) set of nodes from the rest of the graph, and (iv) by the end of the stream, exactly the
input graph (with the exception of the edges removed to disconnect the vertices in (iii)) remains.
Note that this mechanism deliberately adds edges not in the original graph, but they are always
subsequently deleted. We implemented (iii) to guarantee some non-trivial connected components
in each stream’s final graph.

Publicly Available Datasets We also used the following real-world data sets. p2p-gnutella is a graph
representing the Gnutella peer-to-peer network [69]. rec-amazon is a co-purchase recommendation
graph for products listed on Amazon [47], where each node represents a product and there is an
edge between two nodes if their corresponding products are frequently purchased together. google-
plus is a graph among users of the Google Plus social network [56] where edges represent follower
relations. web-uk is a web graph, where edges represent links between pages [70]. Each of these
real-world graphs was converted to a stream using the process described above.

6.2 GraphZeppelin is Fast and Compact

We now demonstrate that, given the same memory resources, GraphZeppelin can handle larger
inputs than Aspen and Terrace on sufficiently large and dense graph streams. We also show that
unlike these systems, GraphZeppelin maintains good performance when its data structures are
stored on SSD.

Both Aspen and Terrace are optimized for the batch-parallelmodel of dynamic graph processing.
In this model, updates are applied to a non-empty graph in batches containing exclusively insertions
or exclusively deletions. This contrasts with our streamingmodel, an initially empty graph is defined
entirely from a stream of interspersed inserts and deletes. To avoid unfairly penalizing Aspen and
Terrace, we group the input stream into batches insertions and deletions to these systems (ignoring
any query correctness issues this may introduce) and present these batches as the input stream.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



Dataset Aspen Terrace GraphZeppelin
kron13 2.4 0.44 0.52
kron15 3.4 4.4 2.9
kron16 5.8 23 6.6
kron17 16 > 96 15
kron18 56 N/A 33

p2p-gnutella 2.2 0.009 4.2
rec-amazon 1.7 0.009 6.6
google-plus 2.5 0.3 8.3
web-uk 2.4 0.36 10

Fig. 12. GraphZeppelin uses less space than Aspen or Terrace to process large, dense graph streams. Space

usage for each system is given in Gibibytes. Terrace timed out on kron17 in this experiment. For the sake of

completeness, the table includes space utilization for all datasets. The chart includes only the dense Kronecker

graphs.

Whenever one of these arrays fills, we feed it into the appropriate batch update function provided
by Aspen or Terrace.

We ran GraphZeppelin, Aspen, and Terrace on each Kronecker stream. We used a batch size of
106 for Aspen and Terrace because we found this to produce the highest ingestion rates for both
systems. To record memory usage we logged the output of the Linux top command tracking each
system every five seconds. All experiments were run for a maximum of 24 hours.
Memory profiling. GraphZeppelin’s space-efficient CubeSketches make it a𝑂 (𝑉 /log3 (𝑉 ))-factor
smaller than Aspen or Terrace asymptotically. Given the polylogarithmic factors and constants,
this experiment determines the actual crossover point where GraphZeppelin is more compact
than Aspen and Terrace. As shown in Figure 12, GraphZeppelin is smaller than Terrace even on
kron15, and uses roughly equivalent memory to Aspen on kron13–kron17. For kron18 we observe
the Aspen uses roughly double the memory as GraphZeppelin. For larger dense graphs, we this
difference will continue to grow because of the asymptotic difference in space usage.

Note that Terrace does not currently support batch deletions, so we rely on its individual edge deletion functionality instead
and do not maintain a deletions array.
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Fig. 13. GraphZeppelin remains fast even when its data structures are stored on disk, unlike Aspen and

Terrace.

Fig. 14. GraphZeppelin is faster than Aspen and Terrace even when all data structures fit in RAM.

I/O Performance and Ingestion Rate. Unlike Aspen and Terrace, GraphZeppelin maintains consis-
tently high ingestion rates when its data structures are stored on SSD. In Figure 13 we summarize
the results of running Aspen, Terrace, and GraphZeppelin with only 16GB of RAM. The ingestion
rates of both Aspen and Terrace plummet once their data structures exceed 16GB in size and they
are forced to store excess data on SSD. Neither Aspen nor Terrace were able to finish their largest
evaluated stream within 24 hours (217 for Terrace and 218 for Aspen). In comparison, GraphZep-
pelin’s ingestion rate remains high when its memory consumption extends into secondary storage.
GraphZeppelin’s gutter tree finished the kron18 stream with an average ingestion rate of 2.50
million updates per second, a 29% reduction to its performance compared to when its sketches are
stored entirely in RAM.

In RAM, GraphZeppelin’s ingestion rate is higher than Aspen’s and Terrace’s on all Kronecker
streams. We summarize these results in Figure 14. Notably, on kron18 GraphZeppelin ingests 4.25
million updates per second, over three times faster than Aspen. GraphZeppelin ingests more than
an order of magnitude faster than Terrace on these streams, so we omit it from the figure.
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Fig. 15. GraphZeppelin’s 5 million updates/sec performance does not depend on graph density. In contrast,

Aspen ingests quickly (almost 3 million u/s) at low density but quickly falls off to slightly more than 1 million

u/s as density increases. Terrace ingests more slowly even when the graph is sparse (likely due to unoptimized

implementation of edge deletions) and exhibits a slight fall-off as density increases.

Figure 15 displays the ingestion rates of Aspen, Terrace, and GraphZeppelin on kron17 as a
function of graph density. As with all of the Kronecker graph streams used in this work, the graph
starts out empty at the beginning of the stream and gradually grows denser as the stream progresses
and more edges are inserted. GraphZeppelin’s 5 million updates/sec performance does not depend
on graph density. In contrast, Aspen ingests quickly (almost 3 million u/s) at low density but quickly
falls off to slightly more than 1 million u/s as density increases. Terrace ingests more slowly even
when the graph is sparse and exhibits a slight fall-off as density increases. The drastic decrease
in Terrace’s ingestion rate at around 42.5% density is due to its data structures overflowing the
available 64GB of RAM and paging to disk (see Fig. 13). The brief period of low (1.5 million u/s)
ingestion rate for GraphZeppelin at very low density corresponds to the beginning of the stream,
when GraphZeppelin is filling its buffers and not yet processing updates.

6.3 GraphZeppelin is Reliable

GraphZeppelin’s sketching algorithm is not deterministically correct: it has a nonzero failure
probability, which is guaranteed to be at most 1/𝑉 𝑐 for some constant 𝑐 . To establish that failures
do not occur in practice, we compared GraphZeppelinwith an in-memory adjacency matrix stored
as a bit vector. Specifically, we applied stream updates to GraphZeppelin and the adjacency matrix
and periodically queried GraphZeppelin and compared its results with the output of running
Kruskal’s algorithm on the adajacency matrix. We performed 1000 such correctness checks each
on the kron17, p2p-gnutella, rec-amazon, google-plus, and web-uk streams. No failures were ever
observed. While our algorithm’s performance is optimized for dense graphs, this experiment
demonstrates that it succeeds with high probability for both dense and sparse graphs.

6.4 GraphZeppelin is Highly Parallel

Due to the atomized nature of sketch updates, we expect stream ingestion to scale well on multi-core
systems. We experimentally demonstrate this claim by varying the number of threads used for
processing updates and observe a significant speed-up.
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Fig. 16. GraphZeppelin updates sketches in parallel, increasing ingestion rate by 26× when using 46 threads.

Fig. 17. GraphZeppelin gutter size vs ingestion speed.

Figure 16 shows the ingestion rate of GraphZeppelin as the number of threads processing the
kron17 graph stream increases. The threads are given a pool of 64GB RAM so that the parallel
performance can be measured without memory contention. To avoid external memory accesses,
we use leaf-only gutters for buffering. The per-thread increase in ingestion rate is significant;
the ingestion rate for 46 threads is approximately 26 times higher than that of a single thread.
Additionally, at 46 threads the marginal ingestion rate is still positive, suggesting that adding more
threads would further increase performance. We also experimentally determined that a group size
of one gives the best performance with our combination of machine and inputs.

6.5 GraphZeppelin Buffering Facilitates Parallelism and I/O Efficiency

Applying sketch updates is highly scaleable, but only if updates are buffered and applied in batches.
When sketches are stored on disk, processing each update individually requires Ω(1) IOs. Addi-
tionally, cache contention and thread synchronization bottleneck the ingestion rate even when
sketches are in RAM. For these reasons we retain buffers of a constant factor 𝑓 of the node-sketch
size.
Figure 17 summarizes the ingestion rate of GraphZeppelin on the kron17 stream for different

values of 𝑓 when the sketches are stored in RAM and when they are stored on disk. GraphZeppelin
is given 46 GraphWorkers and a group size of 1.With buffers of size 1 (no buffering),GraphZeppelin
ingests 130,000 updates per second in RAM, 33 times slower than when 𝑓 = .10. On SSD, the
ingestion rate is only 2000 insertions per second, 3 orders of magnitude slower than peak on-disk
performance.
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(a) In-memory query times.

(b) On-disk query times.

Fig. 18. GraphZeppelin query performance is comparable to or better than Aspen and Terrace for dense

graphs.

When the sketches fit in RAM, performance increases rapidly indicating that 𝑓 can be quite small
while providing a high ingestion rate. However, once memory requirements exceed main memory,
𝑓 must be larger to offset disk IOs. To achieve an ingestion rate within 5% of peak performance on
kron17, 𝑓 as small as 0.01 is sufficient for entirely in RAM computation, while 𝑓 = .50 is required
when node sketches partially reside on disk.

6.6 ConnectivityQueries are Fast

We show experimentally that GraphZeppelin gives comparable query performance to Aspen and
Terrace on dense graphs when all systems’ data structures fit in RAM. When their data structures
reside on disk,GraphZeppelin answers queries more than five times faster than Aspen (and Terrace
ingests too slowly to test).

GraphZeppelin’s buffering strategies create a tradeoff between stream-ingestion rate and query
latency. When GraphZeppelin receives a connectivity query, it must process remaining stream
updates in its buffering system before computing connectivity using Boruvka’s algorithm. Large
buffers improve stream-ingestion rate (see Section 6.5), particularly when sketches are stored on
disk, but this comes at the cost of increased query latency since these large buffers must be emptied.
For the same reasons, small buffers improve query latency but may decrease ingestion rate.
Figure 18a compares the query latency of GraphZeppelin, Aspen, and Terrace on the kron17

stream where connectivity queries are issued as graph density increases during the stream. In this
experiment GraphZeppelin used small 400-byte leaf-only buffers, enough space for 100 stream
updates. When the graph is sparser, both Aspen and Terrace answer queries more quickly than
GraphZeppelin. As the stream progresses and the graph becomes denser, GraphZeppelin’s query

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



time stays constant while Aspen’s and Terrace’s increase. By 30% density, GraphZeppelin is faster
than Aspen, though Terrace remains the fastest. Even with GraphZeppelin’s small buffer size its
ingestion rate was 3.95 million updates per second, three as fast as Aspen and almost six times
faster than Terrace (until Terrace exceeds RAM size and slows drastically).
Figure 18b compares the query latency of GraphZeppelin and Aspen when RAM is limited to

12GiB, forcing both systems to store part of their data structures on disk. Terrace ingests too slowly
given only 12GiB of RAM to be included in the experiment. In this experiment GraphZeppelin
used 8.3 KB leaf-only buffers (one-tenth of sketch size). GraphZeppelin takes 24 seconds to
perform queries regardless of graph density. Aspen’s queries are fast until the graph is too dense
to fit in RAM; its last query takes 142 seconds, five times slower than GraphZeppelin. Notably,
GraphZeppelinmaintains an ingestion rate of 4.15 million updates per second, 46 times faster than
Aspen. Both systems spend the majority of time on insertions, where GraphZeppelin’s advantages
come through.

7 RELATEDWORK

Graph Sketching Systems. A practical method for using linear-sketching algorithms for
connected-components computation was presented in Tench et al. [75]. They show how techniques
from the AGM connectivity sketch [3] can used to develop a connected-components algorithm
that is simultaneously space-optimal in the dynamic semi-streaming model and I/O-efficient in the
external-memory model. They also build a graph-stream-processing system which is compared
with state-of-the-art graph streaming systems [23, 66].

The present paper serves as the journal version for Tench et al. [75], but it also contains follow-up
work. Specifically, the evaluation in Tench et al. focus primarily on measuring the graph-stream-
ingestion rate, whereas this paper’s expanded evaluation also focuses heavily onmeasuring (a) query
latency and (b) the sensitivity of ingestion and query performance as a function of graph density.
In particular, this paper contains new experiments in order to (1) compare the query latency

of different ℓ0-sketching algorithms, and to (2) evaluate the ingestion rate and query latency of
GraphZeppelin and other streaming-graph processing systems as a function of graph density. This
first class of experiments demonstrates how using the CubeSketch sketching algorithm (proposed
in [75]) decreases GraphZeppelin’s query latency by two orders of magnitude. The second class
of experiments demonstrates that unlike existing graph-processing systems, GraphZeppelin’s
performance, remarkably, depends on the number of nodes, but not the density of edges.
Thus, this paper shows that, contrary to conventional wisdom, computing on massive and

dynamic graphs is possible even when these graphs are not sparse.

Graph Streaming Systems. Existing graph stream processing systems are designed primarily
to handle updates in batches consisting entirely of insertions or entirely of deletions. Streaming
systems that process updates in batches are generally divided into two categories. The first (which
includes Terrace) consists of those systems which finish ingestion prior to beginning queries and
finish queries prior to accepting any additional edges [7, 15, 24, 60, 66, 73, 74]. The second (which
includes Aspen) allows updates to be applied asynchronously by periodically taking “snapshots” of
the graph during ingestion to be used in conducting queries [17, 23, 35, 36, 54].

The batching employed in these systems limits the granularity at which insertions and deletions
may be interspersed. In contrast,GraphZeppelin allows for insertions and deletions to be arbitrarily
interspersed without sacrificing query correctness.

External Memory Systems. There is a rich literature of graph processing systems process static
graphs in external memory. Some such systems store the entire graph out-of-core [31, 45, 53, 84, 86],
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and others are semi-external memory systems that maintain only the vertex-set in RAM [4, 52, 71,
83, 85]. Some systems provide (at least theoretical) design extensions to handle queries on graphs
with insert-only updates [16, 45, 79, 80, 84], but to the best of our knowledge GraphZeppelin is the
first to leverage external-memory effectively in the streaming model of insertions and deletions.

Practical Sketching Systems. While linear sketching was first implemented in a graph process-
ing system in Tench et al. [75], linear sketching implementations for purposes other than graph
processing have been widely studied. Some examples include sketches for recovering frequent
items [22, 55] and estimating the cardinality of sets of items [11, 59]. Of particular note are sketches
which realize the Johnson-Lindenstrauss lemma [37], which have found wide use in applications
such as SDD system solvers and spectral sparsifiers[42, 43].

8 CONCLUSION

GraphZeppelin computes the connected components of graph streams using space asymptotically
smaller than an explicit representation of the graph. It is based on CubeSketch, a new ℓ0-sketching
data structure that outperforms the state of the art on graph-streaming workloads. This new
sketching technique allows GraphZeppelin to process larger, denser graphs than existing graph-
streaming systems given a fixed RAM budget and to ingest these graph streams more quickly.
Even when GraphZeppelin’s sketch data structures are too large to fit in RAM, its work-buffering
strategies allow it to process graph streams on SSD. GraphZeppelin is simultaneously a space-
optimal graph semi-streaming algorithm and an I/O-efficient external-memory algorithm.

The small space complexity of GraphZeppelin’s linear sketch is optimized for large, dense graphs,
unlike prior graph-processing systems, which often focus on sparse graphs. Thus, GraphZeppelin
demonstrates that computational questions on graphs once thought intractably large and dense are
now within reach.
Currently large, dense graphs are studied rarely and at great cost on large high-performance

clusters [19]. Finding more applications that require processing large, dense graphs is an exciting
direction for future work. Since GraphZeppelin’s sketches can be updated independently (Sec-
tion 5.1), we believe that they can be partitioned throughout a distributed cluster without sacrificing
stream ingestion rate.
GraphZeppelin illustrates that additional algorithmic improvements help make graph semi-

steaming algorithms into a powerful engineering tool by reducing the update-time complexity
and allowing sketches to be stored efficiently on SSD. These techniques may generalize to other
graph-analytics problems.
The AGM connected components sketch is a crucial subroutine for other graph sketching al-

gorithms including approximate and exact MST, k-edge connectivity and vertex connectivity,
minimum cut, spectral sparsifiers, and more. However, unchanged these algorithms suffer from
similar issues to the original connectivity sketch - they are larger than RAM and have computation-
ally expensive update procedures. Developing implementable and I/O efficient versions of these
algorithms is an exciting direction for future work.
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