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The Densest Subgraph Problem

Given a graph G = (V,E), find the
node-induced subgraph that maximizes
the ratio of edges to nodes.

d∗ = max
U⊆V

dU

where
dU = # of edges in subgraph induced by U

|U| .
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The Streaming Domain

Imagine that our input graph is very, very large. We have enough
space to store the node list but not much more.

I We only have n polylog(n) space

I G might have as many as Θ(n2) edges

I G is defined by a stream of edge insertions and deletions
Stream:

(insert,1,3), (insert,4,5), (insert,2,5), (delete,4,5)
(insert,1,2)
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Densest Subgraph in Streaming

Our task is to approximate the maximum density subgraph of the
graph defined by the input stream.

I Can’t store entire stream

I Must discard some information
I Prior work:

I Bahmani et al. (PVLDB 2012) have a (2 + ε)-approximation
that requires log(n) passes over the stream

I Bhattycharya et al. (STOC 2015) only require 1 pass
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Our result:

I (1 + ε)-approximation to the densest subgraph problem

I n polylog(n) space

I polylog(n) time per update and poly(n) post-processing time

I Requires a single pass over the input stream



Densest Subgraph in Streaming

Our result:

I (1 + ε)-approximation to the densest subgraph problem

I n polylog(n) space

I polylog(n) time per update and poly(n) post-processing time

I Requires a single pass over the input stream



Densest Subgraph in Streaming

Our result:

I (1 + ε)-approximation to the densest subgraph problem

I n polylog(n) space

I polylog(n) time per update and poly(n) post-processing time

I Requires a single pass over the input stream



Densest Subgraph in Streaming

Our result:

I (1 + ε)-approximation to the densest subgraph problem

I n polylog(n) space

I polylog(n) time per update and poly(n) post-processing time

I Requires a single pass over the input stream



Densest Subgraph in Streaming

Our result:

I (1 + ε)-approximation to the densest subgraph problem

I n polylog(n) space

I polylog(n) time per update and poly(n) post-processing time

I Requires a single pass over the input stream



Densest Subgraph in Streaming

Our approach:

Edge sampling technique
Approximately preserves max density
Remaining graph has n polylog(n) edges

This can be done in streaming
`0-sampling allows emulation of edge sampling
Naive implementation is slow, but improvable



Edge Sampling Preserves Max Density

Sample each edge in G = (V,E) with probability

p ≈ ε−2 log(n)
n

m

where n = |V | and m = |E |. Call the resulting graph G’.

Expected # of edges in G’:

mp = O(ε−2n log(n))

Sampling Theorem

G’ can be used to approximate d∗ (max density of G) up to a
factor (1 + ε).
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Proof of Sampling Theorem: Preliminaries

For any U ⊆ V :

dU =
# of edges in subgraph of G induced by U

|U|

d̃U =
1

p

# of edges in subgraph of G’ induced by U

|U|
We want to show that

(1− ε)d∗ ≤ max
U

d̃U ≤ (1 + ε)d∗
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Proof of Sampling Theorem: Preliminaries

Pick some U ⊆ V of size k. By Chernoff, with probability 1− n−9k ,

Low Density Case

if dU ≤
d∗

60
then d̃U ≤

d∗

10

High Density Case

if dU >
d∗

60
then d̃U ≈ (1± ε)dU

By union bound over all U of size k, and then by all k, the above
holds for all U ⊆ V whp.
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Proof of Sampling Theorem: Lower Bound

Let U∗ = arg maxU dU . Then, since dU∗ = d∗ > d∗

60 ,

˜dU∗ ≥ (1− ε)d∗.

Thus
max
U

d̃U ≥ dU∗ ≥ (1− ε)d∗.
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Implementation in the Streaming Setting

We can solve the problem if we can sample the edges of the stream
with probability p ≈ ε−2log(n) n

m . However, there are two
challenges:

I Edges we sample during the stream may be deleted later

I p depends on m, inaccessible until end of stream
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space and update time, we can return a random edge from G at
the end of the stream.

I p depends on m, inaccessible until end of stream

We sample r � mp edges, and when the stream is over randomly
choose X ∼ Bin(m,p) those edges without replacement.
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Implementation in the Streaming Setting

I Edge updates appear in
stream

I `0-samplers project this
information into a smaller
space

I After the stream, we query
the samplers to get the right
number of edges

Unfortunately, this takes Ω(n)
time per update!
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Why is the update time slow?

I `0-sampling maintains a projection of the edge set defined by
the input stream

I Each time a new edge arrives, we must update every
`0-sampler

I We have more than n `0-samplers, and updating each takes
O(polylogn) time
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The Solution

Using a hash function, randomly partition the edge set into Θ(n)
buckets. Maintain only log(n) `0-samplers for the edges in each
group. When a new edge arrives in the stream, you only need to
update the `0-samplers for its group!



Overflowing Buckets

Problem: Some buckets might get too full. If that happens, we
can’t sample those edges properly.



Solution: More Buckets

So we repeat the process in
parallel with different partitions
log(n) times. With high
probability, each edge will end up
in some sufficiently small group,
so it can be sampled properly.

For each edge update: log(n)
partitions each with log(n)
`0-samplers each with polylog(n)
update time yields polylog(n)
update time.
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Grazie!
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